Organic phosphors have been widely explored with an understanding that crystalline molecular ordering is a requisite for enhanced intersystem crossing. In this context, we explored the room-temperature phosphorescence features of a solvent-free organic liquid phosphor in air. While alkyl chain substitution varied the physical states of the bromonaphthalimides, the phosphorescence remained unaltered for the solvent-free liquid in air. As the first report, a solvent-free liquid of a long swallow-tailed bromonaphthalimide exhibits room-temperature phosphorescence in air. Doping of the phosphor with carbonyl guests resulted in enhanced phosphorescence, and hence a large-area paintable phosphorescent liquid composite with improved lifetime and quantum yield was developed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201811834 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!