The excited-state proton-transfer efficiency of a tetraarylpyrene derivative, 1,3,6,8-tetrakis(4-hydroxy-2,6-dimethylphenyl)pyrene (TDMPP), was investigated thoroughly in the presence of various surfactant assemblies, such as micelles and vesicles. The confined microheterogeneous environments can significantly retard the extent of the excited-state proton-transfer process, resulting in a distinguishable optical signal compared to that in the bulk medium. Physical characteristics of the surfactant assemblies, such as order, interfacial hydration, and surface charge, influence the proton transfer process and allow multiparametric sensing. A higher degree of interfacial hydration facilitates the proton-transfer process, while the positively charged head groups of the surfactants specifically stabilize the anionic form of the probe (TDMPP-O*). Furthermore, Forster energy transfer from the probe to riboflavin was studied in a phospholipid membrane, wherein the relative ratio of the neutral versus anionic forms (TDMPP-OH/TDMPP-O*) was found to influence the extent of energy transfer. Overall, we demonstrate how an ultrafast photophysical process, that is, the excited-state proton transfer, can be influenced by the microenvironment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201801085DOI Listing

Publication Analysis

Top Keywords

excited-state proton-transfer
12
energy transfer
12
surfactant assemblies
8
proton-transfer process
8
interfacial hydration
8
proton transfer
8
transfer
5
modulation excited-state
4
proton-transfer
4
proton-transfer dynamics
4

Similar Publications

QM/MM Calculations on Excited-State Proton Transfer and Photoisomerization of a Red Fluorescent Protein mKeima with Large Stokes Shift.

Biochemistry

December 2024

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.

Large Stokes shift red fluorescent proteins (LSS-RFPs) are of growing interest for multicolor bioimaging applications. However, their photochemical mechanisms are not fully understood. Here, we employed the QM(XDW-CASPT2//CASSCF)/MM method to investigate the excited-state proton transfer and photoisomerization processes of the LSS-RFP mKeima starting from its cis neutral isomer.

View Article and Find Full Text PDF

Excited-state intramolecular proton transfer (ESIPT) molecules are promising fluorophores for various applications. Particularly, their self-absorption-free fluorescence properties would make them a perfect choice as emissive materials for organic light-emitting diodes (OLEDs). Nevertheless, to become effective emitters some of their properties need to be altered by structural modifications.

View Article and Find Full Text PDF

We introduce two water-soluble excited state intramolecular proton transfer (ESIPT) based fluorescent turn-on probes responding to inorganic polyphosphates. These ESIPT probes enable specific detection of short-chain inorganic polyphosphates over a range of different condensed phosphates. The probes are weakly emissive in their off-state due to the blocking of ESIPT by Cu coordination.

View Article and Find Full Text PDF

Anticipating intramolecular excited-state proton-coupled electron transfer (PCET) process within dinuclear Ir-photocatalytic system via the covalent linkage is seminal, yet challenging. Indeed, the development of various dinuclear complexes is also promising for studying integral photophysics and facilitating applications in catalysis or biology. Herein, this study reports dinuclear [Ir(bis{imidazo-phenanthrolin-2-yl}-hydroquinone)(ppy)] (1) complex by leveraging both ligand-centered redox property and intramolecular H-bonding for exploring dual excited-state proton-transfer assisted PCET process.

View Article and Find Full Text PDF

Excited-state intramolecular proton transfer (ESIPT) reactions are one of the fundamental energy transformation reactions in catalysis and biological process. The combining ESIPT with the twisted intramolecular charge transfer (TICT) brings the richness of optical, photoelectronic performances to certain functional compounds. Delineating the mechanism of ESIPT + TICT reactions and further understanding why a specific functional group dominates are fundamentally crucial for the design and application of the functionally photoelectric materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!