A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Overexpression of transketolase gene promotes chilling tolerance by increasing the activities of photosynthetic enzymes, alleviating oxidative damage and stabilizing cell structure in Cucumis sativus L. | LitMetric

Overexpression of transketolase gene promotes chilling tolerance by increasing the activities of photosynthetic enzymes, alleviating oxidative damage and stabilizing cell structure in Cucumis sativus L.

Physiol Plant

StateKey Laboratory of Crop Biology/Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.

Published: December 2019

Despite being a key enzyme of Cavin cycle, transketolase (TK) is believed to be related to abiotic resistance in higher plants. However, how TK affects chilling tolerance still remains largely unknown. Here, we describe the effect of overexpression of the Cucumis sativa TK gene (CsTK) on growth, photosynthesis, ROS metabolism and cell ultrastructure under chilling stress. Low temperature led to a decrease of the photosynthetic rate (Pn), the stomatal conductance (Gs), the actual photochemical efficiency (ΦPSII) and the sucrose content, whereas there was an increase of the intercellular CO concentration (Ci) and MDA content. These changes were alleviated in the CsTK plants after 5 days of chilling stress, however, inhibition of CsTK showed the opposite results. Furthermore, transgenic plants with overexpression of CsTK showed higher increase in leaf area and dry matter, higher activity of the enzymes and higher increase in the contents of metabolism substance involved in Calvin cycle and reactive oxygen scavenging system as well as lower OH and H O content, superoxide anion production rate compared with the control cucumber plants under chilling stress. At the end of the chilling stress, compared to wild-type (WT) which exhibited dramatically destroyed cell ultrastructure, expanded chloroplast, broken cell and chloroplast membranes as well as the disappeared grana lamella, the CsTK sense plants showed a more complete cell ultrastructure, whereas, the damage of the cell ultrastructure was aggravated in CsTK antisense plants. Taken together, these results imply that CsTK promoted chilling tolerance in cucumber plants mainly through increasing the capacity to assimilate carbon, alleviating oxidative damage and stabilizing cell structure.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.12903DOI Listing

Publication Analysis

Top Keywords

cell ultrastructure
16
chilling stress
16
chilling tolerance
12
alleviating oxidative
8
oxidative damage
8
damage stabilizing
8
stabilizing cell
8
cell structure
8
plants chilling
8
higher increase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!