Vital rates such as survival and recruitment have always been important in the study of population and community ecology. At the individual level, physiological processes such as energetics are critical in understanding biomechanics and movement ecology and also scale up to influence food webs and trophic cascades. Although vital rates and population-level characteristics are tied with individual-level animal movement, most statistical models for telemetry data are not equipped to provide inference about these relationships because they lack the explicit, mechanistic connection to physiological dynamics. We present a framework for modelling telemetry data that explicitly includes an aggregated physiological process associated with decision making and movement in heterogeneous environments. Our framework accommodates a wide range of movement and physiological process specifications. We illustrate a specific model formulation in continuous-time to provide direct inference about gains and losses associated with physiological processes based on movement. Our approach can also be extended to accommodate auxiliary data when available. We demonstrate our model to infer mountain lion (Puma concolor; in Colorado, USA) and African buffalo (Syncerus caffer; in Kruger National Park, South Africa) recharge dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ele.13198 | DOI Listing |
Environ Pollut
January 2025
Department of Geology, Aligarh Muslim University, Aligarh, India.
Evolution of groundwater genesis in Central Ganga Plain (CGP) is scrutinized with due consideration of hydrochemical and hydrodynamic environment within Quaternary alluviums. Wide variation in hydrochemical facies in CGP indicates a dynamic hydro-geochemical environment influenced from the seasonal rainfall, return flows, canal seepages, and anthropogenic activities. The Ca-HCO facies retaining meteoric nature is characterized by shallow water levels, high recharge rate, high hydraulic conductivity, low salinity and trace elemental load.
View Article and Find Full Text PDFSoc Sci Med
January 2025
School of Geography and Environmental Sciences (School of Karst Science), Guizhou Normal University, Guiyang, 550025, China; State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550025, China.
An increasing number of people face the challenge of providing long-term, unpaid, informal care to children with cancer. The repetitive and staged processes of treatment create inherently rhythmic care practices, imposing a strict schedule on caregivers' daily routines. To explore the rhythmic nature of pediatric cancer informal care, we discuss the rhythms of daily life during intensive chemotherapy and maintenance therapy, and negotiated strategies of caring practice.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430074, China.
Groundwater faces a pervasive threat from anthropogenic nitrate contamination worldwide, particularly in regions characterized by intensive agricultural practices. This study examines groundwater quality in the Nansi Lake Basin (NSLB), emphasizing nitrate (NO-N) contamination. Utilizing 422 groundwater samples, it investigates hydrochemical dynamics and the impact of land use on groundwater composition.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany.
Heavy precipitation, drought, and other hydroclimatic extremes occur more frequently than in the past climate reference period (1961-1990). Given their strong effect on groundwater recharge dynamics, these phenomena increase the vulnerability of groundwater quantity and quality. Over the course of the past decade, we have documented changes in the composition of dissolved organic matter in groundwater.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, Riphah International University, Campus Lahore, Lahore 54000, Pakistan.
To advance off-grid energy solutions, developing flexible photobatteries capable of direct light charging is essential. This study presents an innovative photobattery architecture that incorporates zinc oxide (ZnO) as an electron-transporting and hole-blocking layer, combined with a hybrid methylammonium tin iodide composite with poly-triarylamine (MASnI/PTAA) for light absorption and hole transport. PTAA facilitates efficient hole transport to the anode, thereby enhancing charge separation and reducing recombination losses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!