A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Advantaging Synergy Photocatalysis with Graphene-Related Carbon as a Counterpart Player of Titania. | LitMetric

Advantaging Synergy Photocatalysis with Graphene-Related Carbon as a Counterpart Player of Titania.

Chem Rec

Department of Chemistry, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.

Published: July 2019

The enhancement of photocatalytic activity of TiO can be made either by promoting absorption efficiency of photon energy or by reducing recombination losses of photogenerated charge carriers, for which fabrication of nanocomposite structure with carbon materials is an optional selection. Among various nanocarbons, graphene (G), graphene oxide (GO), and reduced graphene oxide (rGO) are more favorable as the counterpart materials because they can provide availability of both obverse and reverse surface, thus doubling effective sites for adsorption, loading of nanoparticles, and interfacial interaction with the loaded nanoparticles. Composition of G/GO with titania, therefore, is a hopeful strategy for achieving synergy or cooperative effect in photocatalysis. In this personal account, we focus on the background and methodology of several soft chemical approaches that we have utilized up to date to fabricate nanocomposites of G/GO and titania, aiming to shed light on the importance of designing of nanocomposite structure for enhancing photocatalysis. In addition, we emphasize the role of interfacial interaction between carbon and titania by exemplifying a hybridized photocatalyst based on inexpensive biomass-derived carbon sphere (CS), and demonstrate that it is a crucial influential factor underlying an enhanced visible light photocatalysis. CS can be a better selection as a counterpart component than G/GO, whose core-shell composing structure with titania (TiO @CS) can efficiently induce charge transfer so as to achieve a much higher photocatalytic performance under visible light illumination as compared to the composite of rGO and titania.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tcr.201800127DOI Listing

Publication Analysis

Top Keywords

nanocomposite structure
8
graphene oxide
8
interfacial interaction
8
g/go titania
8
visible light
8
titania
6
advantaging synergy
4
photocatalysis
4
synergy photocatalysis
4
photocatalysis graphene-related
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!