Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The enhancement of photocatalytic activity of TiO can be made either by promoting absorption efficiency of photon energy or by reducing recombination losses of photogenerated charge carriers, for which fabrication of nanocomposite structure with carbon materials is an optional selection. Among various nanocarbons, graphene (G), graphene oxide (GO), and reduced graphene oxide (rGO) are more favorable as the counterpart materials because they can provide availability of both obverse and reverse surface, thus doubling effective sites for adsorption, loading of nanoparticles, and interfacial interaction with the loaded nanoparticles. Composition of G/GO with titania, therefore, is a hopeful strategy for achieving synergy or cooperative effect in photocatalysis. In this personal account, we focus on the background and methodology of several soft chemical approaches that we have utilized up to date to fabricate nanocomposites of G/GO and titania, aiming to shed light on the importance of designing of nanocomposite structure for enhancing photocatalysis. In addition, we emphasize the role of interfacial interaction between carbon and titania by exemplifying a hybridized photocatalyst based on inexpensive biomass-derived carbon sphere (CS), and demonstrate that it is a crucial influential factor underlying an enhanced visible light photocatalysis. CS can be a better selection as a counterpart component than G/GO, whose core-shell composing structure with titania (TiO @CS) can efficiently induce charge transfer so as to achieve a much higher photocatalytic performance under visible light illumination as compared to the composite of rGO and titania.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tcr.201800127 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!