We theoretically study the dissipative Bose-Hubbard model describing the array of tunneling-coupled cavities with non-conservative photon-photon interaction. The bound two-photon states are formed in this system either in the limited range of the center-of-mass wave vectors or in the full Brillouin zone, depending on the strength of the dissipative interaction. Transition between these two regimes is manifested as an exceptional point in the complex energy spectrum. This improves fundamental understanding of the interplay of non-Hermiticity and interactions in the quantum structures and can potentially be used for on-demand nonlinear light generation in photonic lattices.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.43.005917DOI Listing

Publication Analysis

Top Keywords

exceptional points
4
points photon
4
photon pairs
4
pairs bound
4
bound nonlinear
4
nonlinear dissipation
4
dissipation cavity
4
cavity arrays
4
arrays theoretically
4
theoretically study
4

Similar Publications

The discharge of oil-laden wastewater from industrial processes and the frequent occurrence of oil spills pose severe threats to the ecological environment and human health. Membrane materials with special wettability have garnered attention for their ability to achieve efficient oil-water separation by leveraging the differences in wettability at the oil-water interface. These materials are characterized by their simplicity, energy efficiency, environmental friendliness, and reusability.

View Article and Find Full Text PDF

We study topological charge pumping (TCP) in the Rice-Mele (RM) model with irreciprocal hopping. The non-Hermiticity gives rise to interesting pumping physics, owing to the presence of skin effect and exceptional points. In the static one-dimensional (1D) RM model, we find two independent tuning knobs that can drive the topological transition, namely, non-Hermitian parameter $\gamma$ and system size $N$.

View Article and Find Full Text PDF

Graphene-based supercapacitors have gained significant attention due to their exceptional energy storage capabilities. Despite numerous research efforts trying to improve the performance, the challenge of experimentally elucidating the nanoscale-interface molecular characteristics still needs to be tackled for device optimizations in commercial applications. To address this, we have conducted a series of experiments using substrate-free graphene field-effect transistors (SF-GFETs) and oxide-supported graphene field-effect transistors (OS-GFETs) to elucidate the graphene-electrolyte interfacial arrangement and corresponding capacitance under different surface potential states and ionic concentration environments.

View Article and Find Full Text PDF

A novel organic-inorganic eutectic phase change material (PCM) based on sodium acetate trihydrate (SAT) and polyethylene glycol (PEG) was developed to meet the needs of heat recovery and building heating. Three kinds of PEG with different molecular weights were selected to form organic-inorganic eutectic PCM with SAT. The thermal properties of three series of SAT-PEG eutectic PCM were compared based on DSC results, focusing on the impact of PEG addition on the phase change temperature and enthalpy of SAT, as well as the melting uniformity.

View Article and Find Full Text PDF

Copper matrix composites (Cu-MCs) have garnered significant attention due to their exceptional electrical, wear-resistant, and mechanical properties. Among them, AlO/Cu composites, reinforced with AlO, are a focal point in the field of high-strength, high-conductivity copper alloys, owing to their high strength, excellent electrical conductivity, and superior resistance to high-temperature softening. Cold deformation is an effective method for enhancing the mechanical properties of AlO/Cu composites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!