A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inferring Gene Regulatory Networks from Multiple Datasets. | LitMetric

Inferring Gene Regulatory Networks from Multiple Datasets.

Methods Mol Biol

Department of Statistics and Systems Biology Centre, University of Warwick, Coventry, UK.

Published: June 2019

Gaussian process dynamical systems (GPDS) represent Bayesian nonparametric approaches to inference of nonlinear dynamical systems, and provide a principled framework for the learning of biological networks from multiple perturbed time series measurements of gene or protein expression. Such approaches are able to capture the full richness of complex ODE models, and can be scaled for inference in moderately large systems containing hundreds of genes. Related hierarchical approaches allow for inference from multiple datasets in which the underlying generative networks are assumed to have been rewired, either by context-dependent changes in network structure, evolutionary processes, or synthetic manipulation. These approaches can also be used to leverage experimentally determined network structures from one species into another where the network structure is unknown. Collectively, these methods provide a comprehensive and flexible platform for inference from a diverse range of data, with applications in systems and synthetic biology, as well as spatiotemporal modelling of embryo development. In this chapter we provide an overview of GPDS approaches and highlight their applications in the biological sciences, with accompanying tutorials available as a Jupyter notebook from https://github.com/cap76/GPDS .

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-8882-2_11DOI Listing

Publication Analysis

Top Keywords

networks multiple
8
multiple datasets
8
dynamical systems
8
network structure
8
approaches
5
inferring gene
4
gene regulatory
4
regulatory networks
4
datasets gaussian
4
gaussian process
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!