Hydrodynamics and pollution affect estuarine populations, but their ecological effects have rarely been studied in combination. We conducted two laboratory experiments to quantify whether predator-prey interactions between California killifish, Fundulus parvipinnis, and the polychaete Polydora cornuta vary with flow speed and chlorpyrifos exposure. In one experiment, only F. parvipinnis was exposed to chlorpyrifos; in the other, only P. cornuta was exposed. The flume included a 300-cm area of sediment with 24 P. cornuta in a central patch (98 cm). We videotaped groups of three killifish for 50 min at one of four flow speeds (6, 9, 12, or 15 cm/s) and recorded the proportion of bites directed at the prey patch. Unexposed killifish directed 70% of their bites at the prey patch at 6 cm/s, and prey-patch selection decreased as flow increased. Killifish exposed to chlorpyrifos directed 41% of their bites at the prey patch at 6 cm/s with reduced prey-patch selection relative to unexposed fish at 9 and 12 cm/s. At 15 cm/s, both exposed and unexposed fish displayed non-selective biting. Worms were videotaped to quantify their deposit- and suspension-feeding activities. Exposing worms to chlorpyrifos reduced total feeding activity by ~30%. Suspension feeding was more common at faster flow speeds, but the time worms spent suspension feeding relative to deposit feeding was unaffected by chlorpyrifos. No behavioral changes were noted in either species when the other was exposed to chlorpyrifos. This study highlights how hydrodynamic conditions can alter the relative importance of a toxicant's effects on predator-prey interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10646-018-2005-6DOI Listing

Publication Analysis

Top Keywords

predator-prey interactions
12
exposed chlorpyrifos
12
prey patch
12
flow speed
8
interactions california
8
california killifish
8
flow speeds
8
bites prey
8
patch 6 cm/s
8
prey-patch selection
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!