Pterostilbene (PTS) mainly enriched in small fruits such as berries and grapes exerts an antioxidant effect. However, the protective effects of PTS against endoplasmic reticulum stress (ERS) have not yet been elucidated in mouse preimplantation embryo. ERS plays an important role in regulating the pathological and physiological processes, including embryonic development. We explored the protective effect of PTS on the tunicamycin (TM)-induced ERS in mouse preimplantation embryos. In vitro, culture medium was supplemented with different concentrations of TM and PTS. Our result indicated that treatment of zygotes with 0.5 μg/ml TM significantly decreased the development of day 4 blastocysts (P < 0.05), whereas 0.25 μM PTS supplementation improved the development rate of blastocysts. Moreover, TM treatment significantly increased (P < 0.05) the apoptotic index and reduced the total cell number of the blastocyst, whereas PTS treatment counteracted these effects. Additionally, TM potently increased expression levels of ERS-related proteins, such as GRP78, ATF6, PERK, p-Perk, IRE1, ATF4, and CHOP (P < 0.05). However, PTS and PTS + TM treatment decreased expression levels of ERS-related proteins (P < 0.05). Furthermore, expression level of the anti-apoptotic protein and gene BCL2 significantly decreased (P < 0.05) in TM-treated embryo but increased by PTS treatment (P < 0.05), whereas expression levels of the pro-apoptotic protein and gene BAX increased (P < 0.05) with TM but significantly decreased (P < 0.05) with co-treatment with PTS. In summary, PTS treatment significantly increased the development potential of mouse embryo by reduction of ERS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11626-018-0308-9 | DOI Listing |
Dev Cell
January 2025
Centre de recherche du Centre Hospitalier de I'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; Department of Obstetrics and Gynaecology, and Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1C5, Canada. Electronic address:
Apoptosis is a key feature of preimplantation development, but whether it occurs in a cell-autonomous or coordinated manner was unknown. Here, we report that plasma membrane abscission, the final step of cell division, is profoundly delayed in early mouse embryos such that a cytokinetic bridge is maintained for the vast majority of the following interphase. Early embryos thus consist of many pairs of sister cells connected by stable cytokinetic bridges that allow them to share diffusible molecules.
View Article and Find Full Text PDFCell
January 2025
Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China. Electronic address:
Understanding mammalian preimplantation development, particularly in humans, at the proteomic level remains limited. Here, we applied our comprehensive solution of ultrasensitive proteomic technology to measure the proteomic profiles of oocytes and early embryos and identified nearly 8,000 proteins in humans and over 6,300 proteins in mice. We observed distinct proteomic dynamics before and around zygotic genome activation (ZGA) between the two species.
View Article and Find Full Text PDFGenes Cells
January 2025
Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, Fukuoka, Japan.
Preimplantation embryonic development is orchestrated by dynamic changes in the proteome and transcriptome, regulated by mechanisms such as maternal-to-zygotic transition. Here, we employed label-free quantitative proteomics to comprehensively analyze proteome dynamics from germinal vesicle oocytes to blastocysts in mouse embryos. We identified 3490 proteins, including 715 consistently detected across all stages, revealing stage-specific changes in proteins associated with translation, protein modification, and mitochondrial metabolism.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233000, China. Electronic address:
3-Nitropropionic acid (3-NP) is a naturally occurring mycotoxin produced by various species of fungi and plants. However, the potential impact of 3-NP exposure on reproductive health remains unclear. To address this gap, we conducted an in vitro study to investigate the toxic effects of 3-NP on the developmental processes of mouse embryos.
View Article and Find Full Text PDFCell Stem Cell
January 2025
MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China. Electronic address:
Embryo development begins with zygotic genome activation (ZGA), eventually generating blastocysts for implantation. However, in vitro systems modeling the pre-implantation development are still absent and challenging. Here, we used mouse totipotent blastomere-like cells (TBLCs) to develop spontaneous differentiation and blastoid formation systems, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!