YaTCM: Yet another Traditional Chinese Medicine Database for Drug Discovery.

Comput Struct Biotechnol J

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.

Published: November 2018

Traditional Chinese Medicine (TCM) has a long history of widespread clinical applications, especially in East Asia, and is becoming frequently used in Western countries. However, owing to extreme complicacy in both chemical ingredients and mechanism of action, a deep understanding of TCM is still difficult. To accelerate the modernization and popularization of TCM, a single comprehensive database is required, containing a wealth of TCM-related information and equipped with complete analytical tools. Here we present YaTCM (Yet another Traditional Chinese Medicine database), a free web-based toolkit, which provides comprehensive TCM information and is furnished with analysis tools. YaTCM allows a user to (1) identify the potential ingredients that are crucial to TCM herbs through similarity search and substructure search, (2) investigate the mechanism of action for TCM or prescription through pathway analysis and network pharmacology analysis, (3) predict potential targets for TCM molecules by multi-voting chemical similarity ensemble approach, and (4) explore functionally similar herb pairs. All these functions can lead to one systematic network for visualization of TCM recipes, herbs, ingredients, definite or putative protein targets, pathways, and diseases. This web service would help in uncovering the mechanism of action of TCM, revealing the essence of TCM theory and then promoting the drug discovery process. YaTCM is freely available at http://cadd.pharmacy.nankai.edu.cn/yatcm/home.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280608PMC
http://dx.doi.org/10.1016/j.csbj.2018.11.002DOI Listing

Publication Analysis

Top Keywords

traditional chinese
12
chinese medicine
12
mechanism action
12
tcm
10
yatcm traditional
8
medicine database
8
drug discovery
8
tools yatcm
8
action tcm
8
yatcm
4

Similar Publications

Background: Crohn's disease (CD) is a chronic, recurrent gastrointestinal disorder characterized by a complex etiology. Among its perianal complications, anal fistulas represent a challenging comorbidity. With the increase of surgical options, a comprehensive bibliometric analysis was deemed necessary to consolidate the vast array of research in this field.

View Article and Find Full Text PDF

The widespread adoption of high-resolution computed tomography (CT) screening has led to increased detection of small pulmonary nodules, necessitating accurate localization techniques for surgical resection. This review examines the evolution, efficacy, and safety of various localization methods for small pulmonary nodules. Studies focusing on localization techniques for pulmonary nodules ≤30 mm in diameter were included, with emphasis on technical success rates and complication profiles.

View Article and Find Full Text PDF

Cholestasis is a multifactorial hepatobiliary disorder, characterized by obstruction of bile flow and accumulation of bile, which in turn causes damage to liver cells and other tissues. In severe cases, it can result in the development of life-threatening conditions, including cirrhosis and liver cancer. Paeoniflorin (PF) has been demonstrated to possess favourable therapeutic potential for the treatment of cholestasis.

View Article and Find Full Text PDF

Angiotensin-Converting Enzyme 2 Enhances Autophagy via the Consumption of miR-326 in a Mouse Model of Acute Lung Injury.

Biochem Genet

January 2025

Department of Pulmonary Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.

Angiotensin-converting enzyme 2 (ACE2) has been reported to exert a protective effect in acute lung injury (ALI), though its underlying mechanism remains incompletely understood. In this study, ACE2 expression was found to be upregulated in a mouse model of ALI induced by lipopolysaccharide (LPS) injection. ACE2 knockdown modulated the severity of ALI, the extent of autophagy, and the mTOR pathway in this model.

View Article and Find Full Text PDF

Correction to: β-Caryophyllene Liposomes Attenuate Neurovascular Unit Damage After Subarachnoid Hemorrhage in Rats.

Neurochem Res

January 2025

Chongqing Key Laboratory of Biochemistry & Molecular, Pharmacology, School of Pharmacy, Chongqing Medical, University, District of Yuzhong, Chongqing, 400016, People's Republic of China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!