1,8-Bis(dimethylamino)naphthyl-2-ketimines: Inside vs outside protonation.

Beilstein J Org Chem

Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russian Federation.

Published: November 2018

The structure and protonation behaviour of four -arylketimines of 1,8-bis(dimethylamonio)naphthalene with a different number of methoxy groups in an aromatic substituent were investigated in solution by NMR (acetone, DMSO, MeCN), in solid state by X-ray analysis and in the gas phase by DFT calculations. Both mono- and diprotonated species were considered. It has been shown that -isomers of neutral imines can be stabilised by an intramolecular C=N-H···OMe hydrogen bond with a neighbouring methoxy group. Electron-donating OMe groups dramatically increase the basicity of the imino nitrogen, forcing the latter to abstract a proton from the proton sponge moiety in monoprotonated forms. The participation of the -inverted and protonated 1-NMe group in the MeN-H···NH=C hydrogen bond is experimentally demonstrated. It was shown that the number and position of OMe groups in the aromatic substituents strongly affects the rate of the internal hindered rotation of the NH fragment in dications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6278759PMC
http://dx.doi.org/10.3762/bjoc.14.273DOI Listing

Publication Analysis

Top Keywords

groups aromatic
8
hydrogen bond
8
ome groups
8
18-bisdimethylaminonaphthyl-2-ketimines inside
4
inside protonation
4
protonation structure
4
structure protonation
4
protonation behaviour
4
behaviour -arylketimines
4
-arylketimines 18-bisdimethylamonionaphthalene
4

Similar Publications

Analysis of Salicylic and Phenolic Acids in the Plant by HPLC-Fluorescence Detector.

Methods Mol Biol

January 2025

Natural Products Laboratory, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.

Salicylic acid is a member of benzoic acid derivatives, a group of compounds which have a backbone of C6C1 consisting of one carboxyl group and one (or more) hydroxyl group(s) attached to the aromatic ring. Salicylic acid is a signaling compound in systemic acquired resistance (SAR). An increased level of salicylic acid is found in the plant after a fungi's attack, which further induces the accumulation of phytoalexins, low molecular weight defense compounds.

View Article and Find Full Text PDF

The metabolomic approach has recently been used in the assessment of semen quality and male fertility. Additionally, the crucial roles of branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) in metabolic syndrome (MetS) were reported. However, little information exists about the association between BCAAs and AAAs with semen parameters, particularly in men with and without MetS.

View Article and Find Full Text PDF

Lipase enzymes play a vital role in digestion and nutrient metabolism in host organisms, with symbiotic bacteria producing abundant enzymes, carbohydrates, vitamins, and other nutrients. This study aimed to isolate, identify, and screen lipase-producing bacteria from the gut of Systomus sarana, optimize enzyme production using Response Surface Methodology (RSM), and characterize the extracted lipase protein. A total of 11 bacterial strains were isolated and identified through 16S rRNA sequencing.

View Article and Find Full Text PDF

Management of heterogeneous construction, renovation, and demolition (CRD) wood residues in Québec brings into light, a widespread topic under discussion related to their current disposal methods in landfills, that may lead to environmental concerns. With rising forfeitures from a legal standpoint, alternative treatment methods for CRD wood wastes are being explored. Thermochemical biomass conversion techniques can be employed to depolymerize low-quality end-of-life CRD wood and valorize it to bio-based products.

View Article and Find Full Text PDF

The effect of sub-boiling temperatures on mass transfer from former manufactured gas plant residuals.

J Contam Hydrol

January 2025

BCEG Environmental Remediation Co., Ltd., Beijing 100015, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China.

The dissolution of polycyclic aromatic hydrocarbons (PAHs) from coal tar at former manufactured gas plant (FMGP) sites is a long-term threat to groundwater quality. The dissolution rate is often limited by an increase in the viscosity of the non-aqueous phase liquid (NAPL) as the lower molecular weight compounds are depleted over time, and this slow mass transfer prevents the effective application of remediation technologies that rely on NAPL-to-water mass transfer to remove or degrade mass. Increasing subsurface temperatures has the potential to increase mass transfer at FMGP sites by increasing PAH solubility and reducing NAPL viscosity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!