The performance of the Electro-Fenton (EF) process for contaminant degradation depends on the rate of HO production at the cathode via 2-electron dissolved O reduction. However, the low solubility of O (≈1×10 mol dm) limits HO production. Herein, a novel and practical strategy that enables the synergistic utilization of O from the bulk electrolyte and ambient air for efficient HO production is proposed. Compared with a conventional "submerged" cathode, the HO concentration obtained using the "floating" cathode is 4.3 and 1.5 times higher using porous graphite felt (GF) and reticulated vitreous carbon (RVC) foam electrodes, respectively. This surprising enhancement results from the formation of a three-phase interface inside the porous cathode, where the O from ambient air is also utilized for HO production. The contribution of O from ambient air varies depending on the cathode material and is calculated to be 76.7% for the GF cathode and 35.6% for the RVC foam cathode. The effects of pH, current, and mixing on HO production are evaluated. Finally, the EF process enhanced by the "floating" cathode degraded 78.3% of the anti-inflammatory drug ibuprofen after 120 min compared to only 25.4% using a conventional "submerged" electrode, without any increase in the cost.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6287755PMC
http://dx.doi.org/10.1016/j.elecom.2018.09.007DOI Listing

Publication Analysis

Top Keywords

"floating" cathode
12
ambient air
12
cathode
8
conventional "submerged"
8
rvc foam
8
production
5
cathode efficient
4
efficient electrogeneration
4
electrogeneration applied
4
applied degradation
4

Similar Publications

The design of interfaces between nanostructured electrodes and advanced electrolytes is critical for realizing advanced electrochemical double-layer capacitors (EDLCs) that combine high charge-storage capacity, high-rate capability, and enhanced safety. Toward this goal, this work presents a novel and sustainable approach for fabricating ionogel-based electrodes using a renewed slurry casting method, in which the solvent is replaced by the ionic liquid (IL), namely 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIFSI). This method avoids time-consuming and costly electrolyte-filling steps by integrating the IL directly into the electrode during slurry preparation, while improving the rate capability of EDLCs based on non-flammable ILs.

View Article and Find Full Text PDF

Overcoming Gas Mass Transfer Limitations Using Gas-Conducting Electrodes for Efficient Nitrogen Reduction.

ACS Nano

January 2025

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China.

Electrocatalytic nitrogen reduction reaction (NRR) is a very attractive strategy for ammonia synthesis due to its energy savings and sustainability. However, the ammonia yield and Faraday efficiency of electrocatalytic nitrogen reduction have been challenges due to low nitrogen solubility and competitive hydrogen evolution reaction (HER) in electrolyte solution. Herein, inspired by the asymmetric wetting behavior, i.

View Article and Find Full Text PDF

Thin and Flexible PANI/PMMA/CNF Forest Films Produced via a Two-Step Floating Catalyst Chemical Vapor Deposition.

Materials (Basel)

November 2024

Research Lab of Advanced, Composite, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Str., Zographos, 15780 Athens, Greece.

In this paper, we explore a straightforward two-step method to produce high-purity, vertically aligned multi-walled carbon nanofibres (MWCNFs) via chemical vapor deposition (CVD). Two distinct solutions are utilized for this CVD method: a catalytic solution consisting of ferrocene and acetonitrile (ACN) and a carbon source solution with camphor and ACN. The vapors of the catalytic solution inserted in the reaction chamber through external boiling result in a floating catalyst CVD approach that produces vertically aligned CNFs in a consistent manner.

View Article and Find Full Text PDF

Background: Extraction of a broken lead fragment (BLF) has received scant attention in the literature.

Methods: Retrospective analysis was to compare the effectiveness of different approaches and tools used for BLF removal during 127 procedures.

Results: A superior approach was the most popular (75.

View Article and Find Full Text PDF

Nanowires and other high aspect ratio nanoparticles are building blocks to form network materials in formats such as films, sheets, fibres and electrodes that thus bridge the nano and macro scales. The assembly of nanowire network materials is enabled by a new floating catalyst chemical vapour deposition synthesis method that produces crystalline silicon nanowires (SiNW) on a scale of grams per day. Here, we produce SiNW dispersions in water by sonication through steric and electrostatic stabilisation of the negatively charged particles in basic pH or with cationic surfactants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!