Acidic soils, where aluminum (Al) toxicity is a major agricultural constraint, are globally widespread and are prevalent in developing countries. In sorghum, the root citrate transporter SbMATE confers Al tolerance by protecting root apices from toxic Al, but can exhibit reduced expression when introgressed into different lines. We show that allele-specific transactivation occurs and is caused by factors located away from Using expression-QTL mapping and expression genome-wide association mapping, we establish that transcription is controlled in a bipartite fashion, primarily in but also in Multiallelic promoter transactivation and ChIP analyses demonstrated that intermolecular effects on expression arise from a WRKY and a zinc finger-DHHC transcription factor (TF) that bind to and -activate the promoter. A haplotype analysis in sorghum RILs indicates that the TFs influence expression and Al tolerance. Variation in expression likely results from changes in tandemly repeated sequences flanking a transposable element (a miniature inverted repeat transposable element) insertion in the promoter, which are recognized by the Al-responsive TFs. According to our model, repeat expansion in Al-tolerant genotypes increases TF recruitment and, hence, expression, which is, in turn, lower in Al-sensitive genetic backgrounds as a result of lower TF expression and fewer binding sites. We thus show that even dominant regulation of an agronomically important gene can be subjected to precise intermolecular fine-tuning. These concerted c/ interactions, which allow the plant to sense and respond to environmental cues, such as Al toxicity, can now be used to increase yields and food security on acidic soils.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320528PMC
http://dx.doi.org/10.1073/pnas.1808400115DOI Listing

Publication Analysis

Top Keywords

aluminum toxicity
8
acidic soils
8
transposable element
8
expression
7
repeat variants
4
variants sbmate
4
sbmate transporter
4
transporter protect
4
protect sorghum
4
sorghum roots
4

Similar Publications

Fingermarks are important forensic evidence for identifying people. In this work, luminescent MOF [Eu(BDC)(HO)] (herein referred as EuBDC) was tested as a potential latent fingermark (LF) luminescent developer powder and its acute toxicity evaluated following OECD protocol 423. The results showed that the powder can develop groomed LF on materials such as leather, plastic, metal, glass, cardboard, and aluminum.

View Article and Find Full Text PDF

Effects of aluminum on metabolism of reactive oxygen species and reactive nitrogen species in root tips of different Eucalyptus species.

BMC Plant Biol

January 2025

Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.

On acidified soil, the growth of Eucalyptus is seriously restricted by aluminum (Al) stress. Therefore, breeding Eucalyptus species with excellent Al tolerance, developing the genetic potential of species, and improving tolerance to Al stress are important for the sustainable development of artificial Eucalyptus forests. By observing the occurrence and distribution of the main reactive oxygen species (ROS) and reactive nitrogen species (RNS) in root tips of Eucalyptus seedlings under Al stress, this study analyzed change in the growth and physiological indexes of Eucalyptus seedlings under Al stress.

View Article and Find Full Text PDF

Enhanced bone cement for fixation of prosthetic joint utilizing nanoparticles.

J Mater Sci Mater Med

January 2025

Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.

Bone cement is commonly utilized to secure prosthetic joints in the body because of its robust fixation, stability, biocompatibility, and immediate load-bearing capability. However, issues such as loosening, leakage, and insufficient bioactivity can lead to its failure. Therefore, improving its mechanical, physical, and biological properties is crucial for enhancing its efficiency.

View Article and Find Full Text PDF

Aluminum phosphide (ALP) is an extremely toxic substance that causes significant morbidity and mortality. Early identification of patients at risk could improve their outcomes. Therefore, this study evaluated the role of serial arterial blood gases and serum cortisol levels in predicting outcomes in patients with acute ALP poisoning.

View Article and Find Full Text PDF

Linoleic acid alleviates aluminum toxicity by modulating fatty acid composition and redox homeostasis in wheat (Triticum aestivum) seedlings.

J Hazard Mater

January 2025

MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Lipids, as key components of biological membranes, play vital roles in sensing and initiating plant responses to various abiotic stresses. Here, the alteration of membrane fatty acids in wheat roots under Al stress was investigated using two genotypes differing in Al tolerance, and the role of linoleic acid in Al tolerance was comprehensively explored. Significant differences in the fatty acid profiles were observed, with increased linoleic acid accumulation in the Al-tolerant genotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!