The family of contains a group of obligate intracellular bacteria that can infect a wide range of hosts. The evolutionary trend of members in this family is a hot topic, which benefits our understanding of the cross-infection of these pathogens. In this study, 14 whole genomes of 12 species were used to investigate the nucleotide, codon, and amino acid usage bias by synonymous codon usage value and information entropy method. The results showed that all the studied spp. had A/T rich genes with over-represented A or T at the third positions and G or C under-represented at these positions, suggesting that nucleotide usages influenced synonymous codon usages. The overall codon usage trend from synonymous codon usage variations divides the spp. into four separate clusters, while amino acid usage divides the spp. into two clusters with some exceptions, which reflected the genetic diversity of the family members. The overall codon usage pattern represented by the effective number of codons (ENC) was significantly positively correlated to gene GC3 content. A negative correlation exists between ENC and the codon adaptation index for some species. These results suggested that mutation pressure caused by nucleotide composition constraint played an important role in shaping synonymous codon usage patterns. Furthermore, codon usage of and gene families adapted to that of the corresponding genome. Taken together, analyses help our understanding of evolutionary interactions between nucleotide, synonymous codon, and amino acid usages in genes of family members.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321445 | PMC |
http://dx.doi.org/10.3390/ijms19124010 | DOI Listing |
Int J Mol Sci
January 2025
School of Life Sciences, Nanchang University, Nanchang 330031, China.
is a fully mycoheterotrophic orchid that lacks both leaves and roots, belonging to the genus in the subtribe Calypsoinae. In this study, we assembled and annotated its mitochondrial genome (397,867 bp, GC content: 42.70%), identifying 55 genes, including 37 protein-coding genes (PCGs), 16 tRNAs, and 2 rRNAs, and conducted analyses of relative synonymous codon usage (RSCU), repeat sequences, horizontal gene transfers (HGTs), and gene selective pressure (dN/dS).
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Department of Biological Sciences, Andong National University, Andong 36729, Republic of Korea.
Prion diseases are fatal neurodegenerative diseases that can be transmitted by infectious protein particles, PrPs, encoded by the endogenous prion protein gene (). The origin of prion seeds is unclear, especially in non-human hosts, and this identification is pivotal to preventing the spread of prion diseases from host animals. Recently, an abnormally high amyloid propensity in prion proteins (PrPs) was found in a frog, of which the genetic variations in the gene have not been investigated.
View Article and Find Full Text PDFCurr Genet
January 2025
Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
The Staphylococcus genus, composed of Gram-positive bacteria, includes several pathogenic species such as Staphylococcus aureus, S. epidermidis, S. haemolyticus, and S.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
Recoding strategies have emerged as a promising approach for developing safer and more effective vaccines by altering the genetic structure of microorganisms, such as viruses, without changing their proteins. This method enhances vaccine safety and efficacy while minimizing the risk of reversion to virulence. Recoding enhances the frequency of CpG dinucleotides, which in turn activates immune responses and ensures a strong attenuation of the pathogens.
View Article and Find Full Text PDFActa Biochim Pol
January 2025
School of Food and Bioengineering, Chengdu University, Chengdu, China.
Members of the families Thermosynechococcaceae and Thermostichaceae are well-known unicellular thermophilic cyanobacteria and a non-thermophilic genus was newly classified into the former. Analysis of the codon usage bias (CUB) of cyanobacterial species inhabiting different thermal and non-thermal niches will benefit the understanding of their genetic and evolutionary characteristics. Herein, the CUB and codon context patterns of protein-coding genes were systematically analyzed and compared between members of the two families.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!