This paper describes the mechanical properties and microstructure of commercially pure titanium (Grade 2) processed with Conform severe plastic deformation (SPD) and rotary swaging techniques. This technology enables ultrafine-grained to nanocrystalline wires to be produced in a continuous process. A comprehensive description is given of those properties which should enable straightforward implementation of the material in medical applications. Conform SPD processing has led to a dramatic refinement of the initial microstructure, producing equiaxed grains already in the first pass. The mean grain size in the transverse direction was 320 nm. Further passes did not lead to any additional appreciable grain refinement. The subsequent rotary swaging caused fine grains to become elongated. A single Conform SPD pass and subsequent rotary swaging resulted in an ultimate strength of 1060 MPa and elongation of 12%. The achieved fatigue limit was 396 MPa. This paper describes the production possibilities of ultrafine to nanocrystalline wires made of pure titanium and points out the possibility of serial production, particularly in medical implants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316910PMC
http://dx.doi.org/10.3390/ma11122522DOI Listing

Publication Analysis

Top Keywords

rotary swaging
12
ultrafine nanocrystalline
8
paper describes
8
pure titanium
8
nanocrystalline wires
8
conform spd
8
subsequent rotary
8
comprehensive evaluation
4
evaluation properties
4
properties ultrafine
4

Similar Publications

Article Synopsis
  • The study examines how different manufacturing methods affect residual stresses in Dievar steel, comparing conventional ingot casting with selective laser melting (SLM) followed by hot rotary swaging.
  • Rotary swaging significantly improved microstructure and hardness, decreasing residual stresses in SLM components from -600 MPa in the core to -300 MPa post-treatment, while enhancing overall material properties.
  • The findings highlight the effectiveness of rotary swaging as a post-processing technique for optimizing mechanical performance and minimizing failure risks in additively manufactured steel.
View Article and Find Full Text PDF

In vitro corrosion and biocompatibility of additively manufactured biodegradable molybdenum.

Acta Biomater

January 2025

Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China. Electronic address:

Recently, molybdenum (Mo) has been recognized a promising biodegradable metal, however, it is difficult to be processed through traditional deformation or machining due to its high strength & hardness. Additive manufacturing is a good way to get rid of this dilemma. Here, Mo components were directly fabricated with fine Mo powder through selective laser melting (SLM).

View Article and Find Full Text PDF

The effects of severe plastic deformation on NiTi alloys' structure and properties have been extensively studied over the past decades. However, there is a notable lack of systematic data regarding the impact of industrial hot deformation techniques on these alloys. This gap arises from challenges in manufacturing processes related to the unevenness of ingots produced by casting technologies.

View Article and Find Full Text PDF

A significant effort in optimizing the chemical composition and powder metallurgical processing led to preparing new-generation ferritic coarse-grained ODS alloys with a high nano-oxide content. The optimization was aimed at high-temperature creep and oxidation resistance at temperatures in the range of 1100-1300 °C. An FeAlOY alloy, with the chemical composition Fe-10Al-4Cr-4YO (wt.

View Article and Find Full Text PDF

Among the main benefits of powder-based materials is the possibility of combining different constituents to achieve enhanced properties of the fabricated bulk material. The presented study characterizes the micro- and sub-structures and related mechanical properties of ferritic steel strengthened with a fine dispersion of nano-sized YO oxide particles. Unlike the typical method of preparation via rolling, the material presented herein was fabricated by direct consolidation from a mixture of powders using the versatile method of hot rotary swaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!