The principal focus of this work is the in-depth analysis of the biological efficiency of inorganic calcium-filled bacterial cellulose (BC) based hydrogel scaffolds for their future use in bone tissue engineering/bioengineering. Inorganic calcium was filled in the form of calcium phosphate (β-tri calcium phosphate (β-TCP) and hydroxyapatite (HA)) and calcium carbonate (CaCO₃). The additional calcium, CaCO₃ was incorporated following bio-mineralization. Cell viability study was performed with the extracts of BC based hydrogel scaffolds: BC-PVP, BC-CMC; BC-PVP-β-TCP/HA, BC-CMC-β-TCP/HA and BC-PVP-β-TCP/HA-CaCO₃, BC-CMC-β-TCP/HA-CaCO₃; respectively. The biocompatibility study was performed with two different cell lines, i.e., human fibroblasts, Lep-3 and mouse bone explant cells. Each hydrogel scaffold has facilitated notable growth and proliferation in presence of these two cell types. Nevertheless, the percentage of DNA strand breaks was higher when cells were treated with BC-CMC based scaffolds i.e., BC-CMC-β-TCP/HA and BC-CMC-β-TCP/HA-CaCO₃. On the other hand, the apoptosis of human fibroblasts, Lep-3 was insignificant in BC-PVP-β-TCP/HA. The scanning electron microscopy confirmed the efficient adhesion and growth of Lep-3 cells throughout the surface of BC-PVP and BC-PVP-β-TCP/HA. Hence, among all inorganic calcium filled hydrogel scaffolds, 'BC-PVP-β-TCP/HA' was recommended as an efficient tissue engineering scaffold which could facilitate the musculoskeletal (i.e., bone tissue) engineering/bioengineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320792PMC
http://dx.doi.org/10.3390/ijms19123980DOI Listing

Publication Analysis

Top Keywords

hydrogel scaffolds
16
inorganic calcium
12
calcium filled
12
based hydrogel
12
biological efficiency
8
efficiency inorganic
8
bacterial cellulose
8
cellulose based
8
bone tissue
8
tissue engineering/bioengineering
8

Similar Publications

Environmental changes, such as applied medication, nutrient depletion, and accumulation of metabolic residues, affect cell culture activity. The combination of these factors reflects on the local temperature distribution and local oxygen concentration towards the cell culture scaffold. However, determining the temporal variation of local temperature, independent of local oxygen concentration changes in biological specimens, remains a significant technological challenge.

View Article and Find Full Text PDF

Current Status of Bioprinting Using Polymer Hydrogels for the Production of Vascular Grafts.

Gels

December 2024

Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 27201 Kladno, Czech Republic.

Cardiovascular disease is one of the leading causes of death and serious illness in Europe and worldwide. Conventional treatment-replacing the damaged blood vessel with an autologous graft-is not always affordable for the patient, so alternative approaches are being sought. One such approach is patient-specific tissue bioprinting, which allows for precise distribution of cells, material, and biochemical signals.

View Article and Find Full Text PDF

How to Deal with Pulpitis: An Overview of New Approaches.

Dent J (Basel)

January 2025

Department of Conservative Dentistry with Endodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-902 Bytom, Poland.

Traditional root canal therapy (RCT) effectively removes diseased or necrotic pulp tissue and replaces it with inorganic materials. Regenerative endodontics is an alternative to conventional RCT by using biologically based approaches to restore the pulp-dentin complex. This review explores emerging techniques, including autogenic and allogenic pulp transplantation, platelet-rich fibrin, human amniotic membrane scaffolds, specialized pro-resolving mediators, nanofibrous and bioceramic scaffolds, injectable hydrogels, dentin matrix proteins, and cell-homing strategies.

View Article and Find Full Text PDF

Release Profile and Antibacterial Activity of Essential Oil-Incorporated, Optimally Stabilized Type I Collagen Hydrogels.

Bioengineering (Basel)

January 2025

Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research and School of Mechanical and Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland.

Antimicrobial resistance is one of the drastically increasing major global health threats due to the misuse and overuse of antibiotics as traditional antimicrobial agents, which render urgent the need for alternative and safer antimicrobial agents, such as essential oils (EOs). Although the strong antimicrobial activity of various EOs has already been studied and revealed, their characteristic high sensitivity and volatility drives the need towards a more efficient drug administration method via a biomaterial system. Herein, the potential of EO incorporated in functionalized antibacterial collagen hydrogels was investigated.

View Article and Find Full Text PDF

Developing scaffolds supporting functional cell attachment and tissue growth is critical in basic cell research, tissue engineering, and regenerative medicine approaches. Though poly(ethylene glycol) (PEG) and its derivatives are attractive for hydrogels and scaffold fabrication, they often require bioactive modifications due to their bioinert nature. In this work, biomimetic synthesized conductive polypyrrole-poly(3,4-ethylenedioxythiophene) copolymer doped with poly(styrenesulfonate) (PPy-PEDOT:PSS) was used as a biocompatible coating for poly(ethylene glycol) diacrylate (PEGDA) hydrogel to support neuronal and muscle cells' attachment, activity, and differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!