Dispersed silver nanoparticles (AgNPs) on the surface of titanium alloy (Ti6Al4V) and titanium alloy modified by titania nanotube layer (Ti6Al4V/TNT) substrates were produced by the chemical vapor deposition method (CVD) using a novel precursor of the formula [Ag₅(O₂CC₂F₅)₅(H₂O)₃]. The structure and volatile properties of this compound were determined using single crystal X-ray diffractometry, variable temperature IR spectrophotometry (VT IR), and electron inducted mass spectrometry (EI MS). The morphology and the structure of the produced Ti6Al4V/AgNPs and Ti6Al4V/TNT/AgNPs composites were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Moreover, measurements of hardness, Young's modulus, adhesion, wettability, and surface free energy have been carried out. The ability to release silver ions from the surface of produced nanocomposite materials immersed in phosphate-buffered saline (PBS) solution has been estimated using inductively coupled plasma mass spectrometry (ICP-MS). The results of our studies proved the usefulness of the CVD method to enrich of the Ti6Al4V/TNT system with silver nanoparticles. Among the studied surface-modified titanium alloy implants, the better nano-mechanical properties were noticed for the Ti6Al4V/TNT/AgNPs composite in comparison to systems non-enriched by AgNPs. The location of silver nanoparticles inside of titania nanotubes caused their lowest release rate, which may indicate suitable properties on the above-mentioned type of the composite for the construction of implants with a long term antimicrobial activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321524PMC
http://dx.doi.org/10.3390/ijms19123962DOI Listing

Publication Analysis

Top Keywords

titanium alloy
16
silver nanoparticles
12
silver ions
8
surface-modified titanium
8
alloy implants
8
mass spectrometry
8
studies silver
4
ions releasing
4
releasing processes
4
processes mechanical
4

Similar Publications

The Ti6Al4V alloy is widely recognized for its extensive industrial applications, particularly in the aeronautics sector, due to its exceptional strength to-weight ratio and corrosion resistance. In this context, many industrial processes depend critically on surface area, topology, and roughness. A promising approach involves combining Ti6Al4V alloy with polymer composites, which offers significant potential for engineers to design parts that are not only high-performing but also environmentally friendly.

View Article and Find Full Text PDF

Background: The selection guideline for the implant-supported bar connectors (ISBC) of hybrid denture is lacking. This study investigated the maximum von Mises stress (vMS), stress distribution, and displacement of various geometric ISBC in mandibular hybrid dentures, as well as the maximum principal stress (σmax) in the acrylic resin part, through finite element analysis.

Methods: Four different geometric cross-sectional patterns for mandibular ISBC-L, Y, I, and Square-of equal volume, based on the "All-on-4" concept, were created.

View Article and Find Full Text PDF

Zeolite coatings are studied as molecular sieves for membrane separation, membrane reactors, and chemical sensor applications. They are also studied as anticorrosive films for metals and alloys, antimicrobial and hydrophobic films for heating, ventilation, and air conditioning, and dielectrics for semiconductor applications. Zeolite coatings are synthesized by hydrothermal, ionothermal, and dry-gel conversion approaches, which require high process temperatures and lengthy times (ranging from hours to days).

View Article and Find Full Text PDF

Introduction Spinal fusion surgery with pedicle screws is commonly performed to stabilize the spine of osteoporotic patients. However, securing a strong screw fixation in osteoporotic bone presents significant challenges due to the reduced bone density. This study aimed to compare the biomechanical performance in an osteoporotic bone model of pedicle screws inserted using two different techniques, the Jamshidi needle technique and the pedicle probe technique, as well as the influence of tapping on both these techniques.

View Article and Find Full Text PDF

The treatment and repair of bone tissue damage and loss due to infection, tumours, and trauma are major challenges in clinical practice. Artificial bone scaffolds offer a safer, simpler, and more feasible alternative to bone transplantation, serving to fill bone defects and promote bone tissue regeneration. Ideally, these scaffolds should possess osteoconductive, osteoinductive, and osseointegrative properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!