OBJECTIVE Drug-resistant epilepsy (DRE) presents a therapeutic challenge in children, necessitating the consideration of multiple treatment options. Although deep brain stimulation (DBS) has been studied in adults with DRE, little evidence is available to guide clinicians regarding the application of this potentially valuable tool in children. Here, the authors present the first systematic review aimed at understanding the safety and efficacy of DBS for DRE in pediatric populations, emphasizing patient selection, device placement and programming, and seizure outcomes. METHODS The systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and recommendations. Relevant articles were identified from 3 electronic databases (MEDLINE, Embase, and Cochrane CENTRAL) from their inception to November 17, 2017. Inclusion criteria of individual studies were 1) diagnosis of DRE; 2) treatment with DBS; 3) inclusion of at least 1 pediatric patient (age ≤ 18 years); and 4) patient-specific data. Exclusion criteria for the systematic review included 1) missing data for age, DBS target, or seizure freedom; 2) nonhuman subjects; and 3) editorials, abstracts, review articles, and dissertations. RESULTS This review identified 21 studies and 40 unique pediatric patients (ages 4–18 years) who received DBS treatment for epilepsy. There were 18 patients with electrodes placed in the bilateral or unilateral centromedian nucleus of the thalamus (CM) electrodes, 8 patients with bilateral anterior thalamic nucleus (ATN) electrodes, 5 patients with bilateral and unilateral hippocampal electrodes, 3 patients with bilateral subthalamic nucleus (STN) and 1 patient with unilateral STN electrodes, 2 patients with bilateral posteromedial hypothalamus electrodes, 2 patients with unilateral mammillothalamic tract electrodes, and 1 patient with caudal zona incerta electrode placement. Overall, 5 of the 40 (12.5%) patients had an International League Against Epilepsy class I (i.e., seizure-free) outcome, and 34 of the 40 (85%) patients had seizure reduction with DBS stimulation. CONCLUSIONS DBS is an alternative or adjuvant treatment for children with DRE. Prospective registries and future clinical trials are needed to identify the optimal DBS target, although favorable outcomes are reported with both CM and ATN in children. ABBREVIATIONS ATN = anterior thalamic nucleus; CM = centromedian nucleus of the thalamus; DBS = deep brain stimulation; DRE = drug-resistant epilepsy; RNS = responsive neurostimulation; STN = subthalamic nucleus; VNS = vagus nerve stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/2018.9.PEDS18417 | DOI Listing |
Exp Brain Res
January 2025
Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
Vestibular dysfunction has been reported as a potential cause in adolescent idiopathic scoliosis (AIS). However, it remained unclear how stochastic galvanic vestibular stimulation (GVS) affected kinetic performance of patients with AIS. This study aimed to investigate the effect of stochastic GVS on ground reaction forces (GRF) measures during obstacle negotiation among patients with AIS.
View Article and Find Full Text PDFBMC Cardiovasc Disord
January 2025
Department of Cardiology, Xuzhou Central Hospital, No.199 Jiefang South Road, Quanshan District, Xuzhou, 221009, People's Republic of China.
Background: The aim of this study is to identify factors associated with the development of long-term severe tricuspid regurgitation (TR) following mitral valve replacement (MVR).
Methods: A retrospective analysis was conducted involving 308 patients who underwent single-valve MVR at Xuzhou Central Hospital between April 2017 and December 2022. Preoperative color Doppler ultrasound indicated that all patients had either no or mild to moderate tricuspid regurgitation.
Eur Arch Otorhinolaryngol
January 2025
Vrije Universiteit Brussel, Brussels Health Centre, Brussels, Belgium.
Purpose: Cochlear implants (CI) are the most successful bioprosthesis in medicine probably due to the tonotopic anatomy of the auditory pathway and of course the brain plasticity. Correct placement of the CI arrays, respecting the inner ear anatomy are therefore important. The ideal trajectory to insert a cochlear implant array is defined by an entrance through the round window membrane and continues as long as possible parallel to the basal turn of the cochlea.
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
January 2025
Department of Audiovestibology, ASST dei Sette Laghi, Via Lazio, 21100, Varese, VA, Italy.
Purpose: Evaluate the feasibility and safety of a robotic electrode insertion in pediatric cochlear implantation and compare the results with manually inserted electrodes in the same subject.
Methods: Retrospective case series review of four children who underwent bilateral cochlear implantation with the same array: on one side, the array was inserted using the robot, while on the other side the array was inserted manually. Behavioural and electrophysiological measures were compared.
PLoS One
January 2025
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Introduction: Haemodynamic atrioventricular delay (AVD) optimisation has primarily focussed on signals that are not easy to acquire from a pacing system itself, such as invasive left ventricular catheterisation or arterial blood pressure (ABP). In this study, standard clinical central venous pressure (CVP) signals are tested as a potential alternative.
Methods: Sixteen patients with a temporary pacemaker after cardiac surgery were studied.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!