Health risk assessment of trihalomethanes in water treatment plants in Jiangsu Province, China.

Ecotoxicol Environ Saf

Department of Agricultural and Biological Engineering, Purdue University, 225 S. University Street, West Lafayette, IN 47907-2093, US. Electronic address:

Published: April 2019

Probabilistic lifetime cancer risks and non-cancer risks of trihalomethanes (THMs) through ingestion, dermal contact, and inhalation exposure in 88 drinking water treatment plants (WTPs) with raw waters from five water systems (WSs) in Jiangsu Province were analyzed and compared. Concentrations of THMs in finished water of study WTPs varied, ranging from 18.81 to 38.96 μg/L, which are lower than the maximum of 80 μg/L recommended by USEPA. The results of health risk assessment indicated that cancer risk as well as non-cancer risks of THMs in WTPs sourced from five water systems decreased in the order of WS3 > WS5 > WS2 > WS1 > WS4. The comparison among multiple exposure routes indicated that when non-boiled drinking water is consumed, ingestion has the highest exposure route, with exposure values greater than dermal contact and inhalation for WTPs with raw water from all five water systems. However, when drinking boiled water, dermal contact is the major risk source for WTPs with raw water from WS1 and WS2, instead of dermal contact, inhalation becomes the major risk source for WTPs with raw water from WS3, WS4, and WS5. In WTPs with raw water from water systems WS1, WS3, WS4, and WS5, dibromochloromethane (DBCM) in THMs has the highest contribution to cancer risk, while chloroform in THMs has the highest contribution to non-cancer risk. However, in WTPs with raw water from water system WS2, bromodichloromethane (BDCM) has the highest contribution to both cancer risk and non-cancer risk. The results also indicated that females are prone to cancer risk induced by THMs since Chinese people are accustomed to drinking boiled water. The results supply valuable information for health departments to put forward more specific and efficient policies to control water borne diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2018.12.004DOI Listing

Publication Analysis

Top Keywords

wtps raw
24
raw water
20
water
17
dermal contact
16
water systems
16
cancer risk
16
contact inhalation
12
water water
12
highest contribution
12
risk
9

Similar Publications

Mutagenic drinking water and different levels of emerging micropollutants in Southern Brazil: A new challenge.

Environ Pollut

January 2025

Programa de Pós-graduação Em Ecologia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, 9500, 91501-970, Cx Postal 15007, Porto Alegre, RS, Brazil; Divisão de Laboratórios, Fundação Estadual de Proteção Ambiental Henrique Luís Roessler (FEPAM), Rua Aurélio Porto, 37, 90620-090, Porto Alegre, RS, Brazil. Electronic address:

This study investigated the presence of mutagenic compounds in raw and treated waters at four water treatment plants (WTP01 to WTP04), in southern Brazil. Samples were concentrated using Amberlite XAD4 resin and the acidic and neutral pH fractions tested by mutagenesis in Salmonella/microsome assay, using TA98, TA100 and YG7108 strains in presence and absence of metabolic activation (in vitro human S9). Mutagenesis in raw water was found only by strain TA98 at WTP03, with and without S9.

View Article and Find Full Text PDF

Occurrence, fate, and risk assessment of antibiotics in conventional and advanced drinking water treatment systems: From source to tap.

J Environ Manage

May 2024

Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China. Electronic address:

The occurrence and removal of 38 antibiotics from nine classes in two drinking water treatment plants (WTPs) were monitored monthly over one year to evaluate the efficiency of typical treatment processes, track the source of antibiotics in tap water and assess their potential risks to ecosystem and human health. In both source waters, 18 antibiotics were detected at least once, with average total antibiotic concentrations of 538.5 ng/L in WTP1 and 569.

View Article and Find Full Text PDF

Microplastics (MPs) that pollute drinking water are inherently toxic, act as an adsorbent of hazardous pollutants, and threaten human health. So, the fate of microplastics in drinking water from the source to consumption taps (CTs) was assessed in spring and winter in Zahedan city in Iran. Sampling was performed from 4 reservoirs (raw water), before and after two water treatment plants (WTPs), and 10 CTs.

View Article and Find Full Text PDF

Chromophoric dissolved organic compounds in urban watershed and conventional water treatment process: evidence from fluorescence spectroscopy and PARAFAC.

Environ Sci Pollut Res Int

March 2023

Environmental Engineering Department, Institut Teknologi Nasional Bandung, Jl. PHH Mustafa No. 23, Bandung, Indonesia, 40124.

This study aimed to investigate the origin, quantity, and composition of chromophoric dissolved organic matter (CDOM) from two urbanized watersheds (Cikapundung and Cimahi River), examine how CDOM compounds and absorbances change along the process of two different conventional WTPs (WTP Dago and Cimahi) using PARAFAC, and identify absorbance as potential surrogate parameters for CDOM compounds. Samples were collected from intake, secondary treatment, and filter outlets. PARAFAC was conducted based on two data scenarios: (1) from rainy and dry seasons in Cikapundung river and WTP Dago and (2) from the two rivers and two WTPs during rainy season.

View Article and Find Full Text PDF

Parasitological, microbiological, and antimicrobial resistance profiles of raw and drinking water in a tourist city in the tri-border region of South America.

J Water Health

February 2022

Centro de Educação, Letras e Saúde, Grupo de Pesquisa em Doenças Infecciosas e Parasitárias (GPDIP), Universidade Estadual do Oeste do Paraná (UNIOESTE), Foz do Iguaçu, Paraná, Brazil.

Despite the large amounts of freshwater available in Brazil, the deterioration of surface water can represent a risk of waterborne disease for national and international tourists. The main goal of this study was to assess the quality of drinking water in the triple border region of Brazil before and after being treated in water treatment plants (WTPs) and in Municipal Early Childhood Education Centers (MECECs), in terms of parasitological, microbiological, and physical-chemical aspects. Different water samples were monitored: raw water (RW), treated water (TW), and tap water from the MECECs, giving 60 samples in total, to investigate the presence of Giardia and Cryptosporidium, microbiological indicators, Pseudomonas aeruginosa, and antimicrobial resistance profiles using conventional microbiological assays and parasitological, immunological, and molecular techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!