Neuronal activity can be modulated by endogenous control mechanisms that either facilitate or suppress it. With this idea in mind, we attempted to evaluate and correlate spinal neuronal activity with the amplitude of corticogram (ECoG) event related potentials (ERP) in the presence of nociceptive stimulation in rats. We evaluated the ERP in response to noxious stimuli, endogenous analgesic actions, different frequencies, and heterotopic nociceptive stimulation, as well as in conjunction with recordings from neurons in the spinal cord that are activated by noxious stimuli. Computational tasks enabled us to establish correlations between the amplitude of ERP and neuronal firing of cells in the spinal dorsal horn. Our results show that the ERP amplitude could be modified by previous activity in the cerebral cortex, but the activity in the spinal cord did not change. Previous activity could originate spontaneously or could be driven by sensory stimulation. A recurrent inhibitory cortical action is proposed that could explain the suppression of pain perception during electrical or magnetic transcranial stimulation, as well as during heterotopic stimulation. This study aims to uncover a local recurrent inhibitory cortical action that could modify the sensory information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2018.12.014 | DOI Listing |
Behav Neurol
January 2025
Laboratory of Neurobiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
Astrocytes are the primary cell type in the central nervous system, responsible for maintaining the stability of the brain's internal environment and supporting neuronal functions. Researches have demonstrated the close relationship between astrocytes and the pathophysiology and etiology of major depressive disorder. However, the regulatory mechanisms of astrocytes during depression remain unclear.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
Shanghai University, Shanghai, China.
Neurodynamic observations indicate that the cerebral cortex evolved by self-organizing into functional networks, These networks, or distributed clusters of regions, display various degrees of attention maps based on input. Traditionally, the study of network self-organization relies predominantly on static data, overlooking temporal information in dynamic neuromorphic data. This paper proposes Temporal Self-Organizing (TSO) method for neuromorphic data processing using a spiking neural network.
View Article and Find Full Text PDFGenes Brain Behav
February 2025
Département de Readaptation et gériatrie, University of Geneva, Geneva, Switzerland.
Human microbiota-associated murine models, using fecal microbiota transplantation (FMT) from human donors, help explore the microbiome's role in diseases like Alzheimer's disease (AD). This study examines how gut bacteria from donors with protective factors against AD influence behavior and brain pathology in an AD mouse model. Female 3xTgAD mice received weekly FMT for 2 months from (i) an 80-year-old AD patient (AD-FMT), (ii) a cognitively healthy 73-year-old with the protective APOEe2 allele (APOEe2-FMT), (iii) a 22-year-old healthy donor (Young-FMT), and (iv) untreated mice (Mice-FMT).
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands.
Precise temporal control of sensorimotor coordination and adaptation is a fundamental basis of animal behavior. How different brain regions are involved in regulating the flexible temporal adaptation remains elusive. Here, we investigated the neuronal dynamics of the cerebellar interposed nucleus (IpN) and the medial prefrontal cortex (mPFC) neurons during temporal adaptation between delay eyeblink conditioning (DEC) and trace eyeblink conditioning (TEC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!