NLRC5, a newly discovered member of the NLR family, has been reported to regulate immune responses and promote cell proliferation, migration, and invasion in hepatocellular carcinoma. However, to date, the potential regulatory roles and molecular mechanisms by which NLRC5 affects the development and progression of clear cell renal cell carcinoma (ccRCC) remain largely unknown. In this study, human clinical data from The Cancer Genome Atlas database revealed that increased NLRC5 expression was associated with advanced stage and poor prognosis in ccRCC patients. Moreover, experimental results showed that NLRC5 is aberrantly overexpressed in human ccRCC tissues and cell lines. Depletion of NLRC5 attenuated ccRCC cell proliferation, migration, and invasion and suppressed ccRCC growth in a nude mouse model. By contrast, overexpression of NLRC5 promoted the proliferation, migration, and invasion of ccRCC cells in vitro. Additionally, NLRC5 expression is not only positively correlated with β-catenin but also coordinates the activation of the downstream Wnt/β-catenin signalling pathway. Together, our data suggest that NLRC5 may be a potential therapeutic target for ccRCC therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.canlet.2018.11.024 | DOI Listing |
Anticancer Drugs
January 2025
Department of General Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center.
In gastric cancer, the relationship between human epidermal growth factor receptor 2 (HER2), the cyclic GMP-AMP synthase-stimulator of the interferon genes (cGAS-STING) pathway, and autophagy remains unclear. This study examines whether HER2 regulates autophagy in gastric cancer cells via the cGAS-STING signaling pathway, influencing key processes such as cell proliferation and migration. Understanding this relationship could uncover new molecular targets for diagnosis and treatment.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.
Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.
View Article and Find Full Text PDFIUBMB Life
January 2025
Senior Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
Hepatocellular carcinoma (HCC) ranks among the most prevalent types of cancer globally. Zinc finger protein 169 (ZNF169) holds significant importance as a transcription factor, yet its precise function in HCC remains to be elucidated. This study aims to examine the clinical importance, biological functions, and molecular pathways associated with ZNF169 in the development of HCC.
View Article and Find Full Text PDFJ Med Chem
January 2025
Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China.
Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths globally, and the need for effective systemic therapies for HCC is urgent. Our previous work reveals that Pin1 is a potential anti-HCC target, which regulates miRNA biogenesis and identifies as a novel Pin1 inhibitor to suppresses HCC. However, a great demand in HCC therapy as well as the limited chemical stability and pharmacokinetic feature of motivated us to find improved Pin1 inhibitors.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
[This corrects the article DOI: 10.3389/fonc.2022.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!