Fluorescence resonance energy transfer (FRET) assays and membrane binding determinations were performed using three phosphatidylinositol transfer proteins, including the yeast Sec14 and two mammalian proteins PITPα and PITPβ. These proteins were able to specifically bind the fluorescent phosphatidylcholine analogue NBD-PC ((2-(12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)dodecanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine)) and to transfer it to small unilamellar vesicles (SUVs). Rate constants for transfer to vesicles comprising 100% PC were slower for all proteins than when increasing percentages of phosphatidylinositol were incorporated into the same SUVs. The rates of ligand transfer by Sec14 were insensitive to the inclusion of equimolar amounts of another anionic phospholipid phosphatidylserine (PS), but the rates of ligand transfer by both mammalian PITPs were strikingly enhanced by the inclusion of phosphatidic acid (PA) in the receptor SUV. Binding of Sec14 to immobilized bilayers was substantial, while that of PITPα and PITPβ was 3-7 times weaker than Sec14 depending on phospholipid composition. When small proportions of the phosphoinositide PI(4)P were included in receptor SUVs (either with PI or not), Sec14 showed substantially increased rates of NBD-PC pick-up, whereas the PITPs were unaffected. The data are supportive of a role for PITPβ as functional PI transfer protein in vivo, but that Sec14 likely has a more elaborate function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2018.12.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!