Modulated interlayer charge transfer dynamics in a monolayer TMD/metal junction.

Nanoscale

National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China.

Published: January 2019

The performance of optoelectronic devices based on monolayer transition-metal dichalcogenide (mTMD) semiconductors is significantly affected by the contact at the mTMD-metal interface, which is dependent on interlayer interactions and coupling. Here, we report a systematic optical method to investigate the interlayer charge transfer and coupling in a mTMD-metal heterojunction. Giant photoluminescence (PL) quenching was observed in a monolayer MoS2/Pd (1L MoS2/Pd) junction which is mainly due to the efficient interlayer charge transfer between Pd and MoS2. 1L MoS2/Pd also exhibits an increase in the PL quenching factor (η) as the temperature decreases, due to a reduction of the interlayer spacing. Annealing experiments were also performed which supported interlayer charge transfer as the main mechanism for the increase of η. Moreover, a monolayer MoS2/Au (1L MoS2/Au) junction was fabricated for engineering the interlayer charge transfer. Interestingly, a narrowing effect of the full width at half maximum (FWHM) was encountered as the junctions changed from 1L MoS2/SiO2 → 1L MoS2/Au → 1L MoS2/Pd, possibly originating from a change of the doping level induced weakening of exciton-carrier scattering. Our results deepen the understanding of metal-semiconductor junctions for further exploring fundamental phenomena and enabling high-performance devices using mTMD-metal junctions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr08728hDOI Listing

Publication Analysis

Top Keywords

interlayer charge
20
charge transfer
20
interlayer
6
charge
5
transfer
5
modulated interlayer
4
transfer dynamics
4
monolayer
4
dynamics monolayer
4
monolayer tmd/metal
4

Similar Publications

Aqueous zinc-based batteries (AZBs) are gaining widespread attention owing to their intrinsic safety, relatively low electrode potential, and high theoretical capacity. Transition metal dichalcogenides (TMDs) have convenient 2D ion diffusion channels, so they have been identified as promising host materials for AZBs, but face several key challenges such as the narrow interlayer spacing and the lack of in-deep understanding energy storage mechanisms. This review presents a comprehensive summary and discussion of the intrinsic structure, charge storage mechanisms, and key fabrication strategies of TMD-based cathodes for AZBs.

View Article and Find Full Text PDF

This study evaluates the feasibility of converting Ca-montmorillonite into Na-montmorillonite through electroosmosis. Comprehensive analyses of current, pH, ζ-potential, and ethylene glycol expansion were conducted to investigate the macro- and microscale effects of electroosmosis. The results demonstrate that electroosmosis effectively reduces the swelling properties of montmorillonite.

View Article and Find Full Text PDF

Poly[(9,9-dioctylfluorenyl-2,7-diyl)--(4,4'-(-(4-butylphenyl)))] (TFB) is a widely used hole transport material (HTM) in quantum dot light-emitting diodes (QLEDs). However, TFB-based solution-processed QLEDs face several challenges, including interlayer erosion, low hole mobility, shallow energy level of the highest occupied molecular orbital, and current leakage, which compromise the device efficiency and stability. To overcome these challenges, bromine and azide-based photothermally cross-linkable TFB derivatives, i.

View Article and Find Full Text PDF

Challenges and opportunities in 2D materials for high-performance aqueous ammonium ion batteries.

Natl Sci Rev

February 2025

Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.

Aqueous ammonium ion batteries (AAIBs) have attracted considerable attention due to their high safety and rapid diffusion kinetics. Unlike spherical metal ions, NH forms hydrogen bonds with host materials, leading to a unique storage mechanism. A variety of electrode materials have been proposed for AAIBs, but their performance often falls short in terms of future energy storage needs.

View Article and Find Full Text PDF

The interfaces between the perovskite and charge-transporting layers typically exhibit high defect concentrations, which are the primary cause of open-circuit voltage loss. Passivating the interface between the perovskite and electron-transporting layer is particularly challenging due to the dissolution of surface treatment agents during the perovskite coating. In this study, a coherent FAPbICl buried interface was simultaneously formed during the preparation of FAPbI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!