Background: For almost four decades, hydroxyl radical chemically generated by Fenton chemistry has been a mainstay for the oxidative 'footprinting' of macromolecules.

Objective: In this article, we start by reviewing the application of chemical generation of hydroxyl radical to the development of oxidative footprinting of DNA and RNA and the subsequent application of the method to oxidative footprinting of proteins. We next discuss a novel strategy for generating hydroxyl radicals by Fenton chemistry that immobilizes catalytic iron on a solid surface (Pyrite Shrink Wrap laminate) for the application of nucleic acid and protein footprinting.

Method: Pyrite Shrink-Wrap Laminate is fabricated by depositing pyrite (Fe-S2, aka 'fool's gold') nanocrystals onto thermolabile plastic (Shrinky Dink). The laminate can be thermoformed into a microtiter plate format into which samples are deposited for oxidation.

Results: We demonstrate the utility of the Pyrite Shrink-Wrap Laminate for the chemical generation of hydroxyl radicals by mapping the surface of the T-cell co-stimulatory protein Programmed Death - 1 (PD-1) and the interface of the complex with its ligand PD-L1.

Conclusion: We have developed and validated an affordable and reliable benchtop method of hydroxyl radical generation that will broaden the application of protein oxidative footprinting. Due to the minimal equipment required to implement this method, it should be easily adaptable by many laboratories with access to mass spectrometry.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929866526666181212164812DOI Listing

Publication Analysis

Top Keywords

hydroxyl radical
16
chemical generation
12
generation hydroxyl
12
oxidative footprinting
12
oxidative 'footprinting'
8
fenton chemistry
8
hydroxyl radicals
8
pyrite shrink-wrap
8
shrink-wrap laminate
8
hydroxyl
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!