Truncation is a mechanism that permits observation of selected subjects from a source population; subjects are excluded if their event times are not contained within subject-specific intervals. Standard survival analysis methods for estimation of the distribution of the event time require of failure and truncation. When quasi-independence does not hold, alternative estimation procedures are required; currently, there is a copula model approach that makes strong modeling assumptions, and a transformation model approach that does not allow for right censoring. We extend the transformation model approach to accommodate right censoring. We propose a regression diagnostic for assessment of model fit. We evaluate the proposed transformation model in simulations and apply it to the National Alzheimer's Coordinating Centers autopsy cohort study, and an AIDS incubation study. Our methods are publicly available in an R package, tranSurv.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6565507PMC
http://dx.doi.org/10.1177/0962280218817573DOI Listing

Publication Analysis

Top Keywords

transformation model
16
model approach
12
model
5
transformation
4
model estimation
4
estimation survival
4
survival dependent
4
dependent truncation
4
truncation independent
4
independent censoring
4

Similar Publications

Molecular dynamics work on thermal conductivity of SiGe nanotubes.

J Mol Model

January 2025

School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.

Context: SiGe nanotubes (SiGeNTs) hold significant promise for applications in nanosolar cells, optoelectronic systems, and interconnects, where thermal conductivity is critical to performance. This study investigates the effects of length, diameter, temperature, and axial strain on the thermal conductivity of armchair and zigzag SiGeNTs through molecular dynamics simulations. Results indicate that thermal conductivity increases with sample length due to ballistic heat transport and decreases with temperature as phonon scattering intensifies.

View Article and Find Full Text PDF

Issue: The digital transformation of the U.S. health care system is underway, but the role of health care chief information officers (HCIOs) in that transformation has been unclear.

View Article and Find Full Text PDF

The remediation of wastewaters contaminated with dyes (discharged mainly from industry) is very important for preserving environmental quality and human health. In this study, a new composite chitosan (CS)-based adsorbent combined with activated carbon (AC) and curcumin (Cur) (abbreviated hereafter as CS/AC@Cur) in three different ratios (12.5%, 25%, and 50%) was synthesized for the removal of anionic [reactive black 5 (RB5)] and cationic [methylene blue (MB)] dyes in single-component or binary systems.

View Article and Find Full Text PDF

Microglial phagocytosis of haematomas is crucial for neural functional recovery following intracerebral haemorrhage (ICH), a process regulated by various factors from within and outside the central nervous system (CNS). Extracellular vesicles (EVs), significant mediators of intercellular communication, have been demonstrated to play a pivotal role in the pathogenesis and progression of CNS diseases. However, the regulatory role of endogenous EVs on the phagocytic capacity of microglia post-ICH remains elusive.

View Article and Find Full Text PDF

Background: Head and neck free flap reconstruction presents challenges in managing intraoperative circulation, potentially leading to prolonged length of stay (PLOS). Limited research exists on the associations between intraoperative circulation and PLOS given the difficulty of manual quantification of intraoperative circulation time-series data. Therefore, this study aimed to quantify intraoperative circulation data and investigate its association with PLOS after free flap reconstruction utilizing machine learning algorithms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!