In flowering plants, successful reproduction and generation of seed depends on the delivery of immotile sperm to female gametes via the pollen tube. As reproduction in flowering plants is the cornerstone of our agricultural industry, there is a need to uncover the genes, small molecules, and environmental conditions that affect pollen tube growth dynamics. However, methods for measuring pollen tube phenotypes are labor intensive, and suffer from a tradeoff between workload and resolution. To approach these problems, we use an image analysis technique called Automated Stack Iterative Subtraction (ASIST). Our tool converts growing pollen tube tips into closed particles, making the automated simultaneous extraction of multiple pollen tube phenotypes from hundreds of individual cells tractable via existing particle identification technology. Here we use our tool to analyze growth dynamics of pollen tubes in vitro, and semi in vivo. We show that ASIST provides a framework for robust, high throughput analysis of pollen tube growth behaviors in populations of cells, thus facilitating pollen tube phenomics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00497-018-00351-8 | DOI Listing |
Plants (Basel)
December 2024
State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
Adenosine monophosphate (AMP) is a hydrolysis product of adenosine triphosphate (ATP) and adenosine diphosphate (ADP). In mammalian cells, extracellular AMP functions as a signaling molecule by binding to adenosine A1 receptors, thereby activating various intracellular signaling pathways. However, the role of extracellular AMP in plant cells remains largely unclear, and homologs of A1 receptors have not been identified.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
Successful pollination and fertilization are crucial for grain setting in cereals. Wheat is an allohexaploid autogamous species. Due to its evolutionary history, the genetic diversity of current bread wheat () cultivars is limited.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Agronomy, UAS, GKVK, Bengaluru, India.
Nanoparticles play a significant role in enhancing crop yield and reducing nutrient loss through precise nutrient delivery mechanisms. However, it is imperative to ascertain the specific plant physiology altered by these nanoparticles. This study investigates the effects of green-synthesized nanoparticles, specifically boron nitride and sulphur, on sunflower yield, seed quality, and physiological activities.
View Article and Find Full Text PDFPlant Commun
December 2024
Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!