Functionality of enzymes is strongly related to water dynamic processes. The control of the redox potential for metallo-enzymes is intimately linked to the mediation of water molecules in the first and second coordination spheres. Here, we report a unique example of supramolecular control of the redox properties of a biomimetic monocopper complex by water molecules. It is shown that the copper complex based on a calix[6]arene covalently capped with a tetradentate [tris(2-methylpyridyl)amine] (tmpa) core, embedding the metal ion in a hydrophobic cavity, can exist in three different states. The first system displays a totally irreversible redox behaviour. It corresponds to the reduction of the 5-coordinate mono-aqua-Cu complex, which is the thermodynamic species in the +II state. The second system is detected at a high redox potential. It is ascribed to an "empty cavity" or "water-free" state, where the Cu ion sits in a 4-coordinate trigonal environment provided by the tmpa cap. This complex is the thermodynamic species in the +I state under "dry conditions". Surprisingly, a third redox system appears as the water concentration is increased. Under water-saturation conditions, it displays a pseudo-reversible behaviour at a low scan rate at the mid-point from the water-free and aqua species. This third system is not observed with the Cu-tmpa complex deprived of a cavity. In the calix[6]cavity environment, it is ascribed to a species where a pair of water molecules is hosted by the calixarene cavity. A molecular mechanism for the Cu/Cu redox process with an interplay of (HO) ( = 0, 1, 2) hosting is proposed on the basis of computational studies. Such an unusual behaviour is ascribed to the unexpected stabilization of the Cu state by inclusion of the pair of water molecules. This phenomenon strongly evidences the drastic influence of the interaction between water molecules and a hydrophobic cavity on controlling the thermodynamics and kinetics of the Cu/Cu electron transfer process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240898PMC
http://dx.doi.org/10.1039/c8sc03124jDOI Listing

Publication Analysis

Top Keywords

water molecules
24
electron transfer
8
water
8
control redox
8
redox potential
8
hydrophobic cavity
8
complex thermodynamic
8
thermodynamic species
8
pair water
8
molecules
6

Similar Publications

The dielectric behavior of Asparagine (CHNO) in water over the frequency range of 10 MHz to 30 GHz in the temperature region of 278.15-303.15 K in a step of 5 K has been carried out using time domain reflectometry (TDR) at various concentrations of asparagine.

View Article and Find Full Text PDF

Hypoxic tumors are radioresistant stemming from the fact that oxygen promotes reactive oxygen species (ROS) propagation after water radiolysis and stabilizes irradiation-induced DNA damage. Therefore, an attractive strategy to radiosensitize solid tumors is to increase tumor oxygenation at the time of irradiation, ideally above a partial pressure of 10 mm-Hg at which full radiosensitization can be reached. Historically, the many attempts to increase vascular O delivery have had limited efficacy, but mathematical models predicted that inhibiting cancer cell respiration would be more effective.

View Article and Find Full Text PDF

Grape pomace (GP), a by-product of the wine supply chain process, contains bioactive molecules with known healthy properties. This study examines the impact of different extraction techniques on three GPs of Aglianico cultivar [Cantine del Notaio, Barile, and Torrecuso]. Five eco-friendly extractive techniques [maceration (MAC), digestion (DIG), accelerated solvent extraction (ASE), microwaves (MW), and ultrasound (US)] were used with 50 % ethanol/water as solvent.

View Article and Find Full Text PDF

Hydrogen Bonding Polarization Strengthening the Peptide-Based Hydrogels.

J Phys Chem B

December 2024

Research Institute of Interdisciplinary Science & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.

Peptide-based hydrogels form a kind of promising material broadly used in biomedicine and biotechnology. However, the correlation between their hydrogen bonding dynamics and mechanical properties remains uncertain. In this study, we found that the adoption of β-sheet and α-helix secondary structures by ECF-5 and GFF-5 peptides, respectively, could further form fiber networks to immobilize water molecules into hydrogels.

View Article and Find Full Text PDF

We present an application of our new theoretical formulation of quantum dynamics, moment propagation theory (MPT) (Boyer et al., J. Chem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!