Quantum key distribution has reached the level of maturity required for deployment in real-world scenarios. It has previously been shown to operate alongside classical communication in the same telecommunication fibre and over long distances in fibre and in free-space links. Despite these advances, the practical applicability of quantum key distribution is curtailed by the fact that most implementations and protocols are limited to two communicating parties. Quantum networks scale the advantages of quantum key distribution protocols to more than two distant users. Here we present a fully connected quantum network architecture in which a single entangled photon source distributes quantum states to many users while minimizing the resources required for each. Further, it does so without sacrificing security or functionality relative to two-party communication schemes. We demonstrate the feasibility of our approach using a single source of bipartite polarization entanglement, which is multiplexed into 12 wavelength channels. Six states are then distributed between four users in a fully connected graph using only one fibre and one polarization analysis module per user. Because no adaptations of the entanglement source are required to add users, the network can readily be scaled to a large number of users, without requiring trust in the provider of the source. Unlike previous attempts at multi-user networks, which have been based on active optical switches and therefore limited to some duty cycle, our implementation is fully passive and thus has the potential for unprecedented quantum communication speeds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-018-0766-y | DOI Listing |
Nano Lett
January 2025
State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China.
Enhancing photoluminescence (PL) efficiency in colloidal quantum dots is pivotal for next-generation near-infrared photodetectors, imaging systems, and photonic devices. Conventional methods, especially metal-based plasmonic structures, suffer from large optical losses, which limits their practical use. Here, we introduce a quasi-bound state in the continuum (quasi-BIC) metasurface on a silicon-on-insulator platform, tailored to provide high-quality factor resonances with minimized losses.
View Article and Find Full Text PDFLangmuir
January 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.
Nontraditional luminogens (NTLs) without large π-conjugated aromatic structures have attracted a great deal of attention in recent years. Developing NTLs with red-shifted and enhanced emissions remains a great challenge. In this work, we developed a NTL composed of three components, i.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Quantum Chemistry, TU Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany.
The two key parameters extracted from Mössbauer spectroscopy, isomer shift and quadrupole splitting, have well-known temperature dependencies. While the behavior of the values following a temperature change has long been known, its microscopic origins are less clear. For quantum chemical calculations - formally representing the situation at 0 K - significant discrepancies with the experiment can arise, especially at elevated temperatures.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
The quantum-electrodynamic non-adiabatic emission (QED-NAE) is a type of radiatively assisted vibronic de-excitation due to electromagnetic vacuum fluctuations on non-adiabatic processes. Building on our previous work [Tsai et al., J.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
Large low-field magnetoresistance (LFMR, < 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden-Popper structures (ABO):AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!