Early diagnosis and risk stratification are key to improve outcomes in light-chain (AL) amyloidosis. Here we used multidimensional-flow-cytometry (MFC) to characterize bone marrow (BM) plasma cells (PCs) from a series of 166 patients including newly-diagnosed AL amyloidosis (N = 94), MGUS (N = 20) and multiple myeloma (MM, N = 52) vs. healthy adults (N = 30). MFC detected clonality in virtually all AL amyloidosis (99%) patients. Furthermore, we developed an automated risk-stratification system based on BMPCs features, with independent prognostic impact on progression-free and overall survival of AL amyloidosis patients (hazard ratio: ≥ 2.9;P ≤ .03). Simultaneous assessment of the clonal PCs immunophenotypic protein expression profile and the BM cellular composition, mapped AL amyloidosis in the crossroad between MGUS and MM; however, lack of homogenously-positive CD56 expression, reduction of B-cell precursors and a predominantly-clonal PC compartment in the absence of an MM-like tumor PC expansion, emerged as hallmarks of AL amyloidosis (ROC-AUC = 0.74;P < .001), and might potentially be used as biomarkers for the identification of MGUS and MM patients, who are candidates for monitoring pre-symptomatic organ damage related to AL amyloidosis. Altogether, this study addressed the need for consensus on how to use flow cytometry in AL amyloidosis, and proposes a standardized MFC-based automated risk classification ready for implementation in clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41375-018-0308-5 | DOI Listing |
Orphanet J Rare Dis
January 2025
Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
Background: There is no unified prognostic scoring system for light chain cardiac amyloidosis (AL-CA), particularly stage IIIb AL-CA. This study aimed to use invasive haemodynamic information to investigate markers that can more accurately evaluate the prognosis of patients with stage IIIb AL-CA.
Methods: In this retrospective cohort study, we conducted invasive haemodynamic measurements concurrently with myocardial biopsies to diagnose AL-CA.
JACC Cardiovasc Imaging
January 2025
National Amyloidosis Centre, University College London, Royal Free Campus, Rowland Hill Street, London, United Kingdom.
Cardiac amyloidosis represents a unique disease process characterized by amyloid fibril deposition within the myocardial extracellular space. Advances in multimodality cardiac imaging enable accurate diagnosis and facilitate prompt initiation of disease-modifying therapies. Furthermore, rapid advances in multimodality imaging have enriched understanding of the underlying pathogenesis, enhanced prognostication, and resulted in the development of imaging-based markers that reflect the amyloid burden, which is of increasing importance when assessing the response to treatment.
View Article and Find Full Text PDFJACC Cardiovasc Imaging
January 2025
Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background: Cardiac involvement in amyloid light chain (AL) amyloidosis significantly influences prognosis, necessitating timely diagnosis and meticulous risk stratification.
Objectives: This prospective study aimed to delineate the molecular phenotypes of AL cardiac amyloidosis (AL-CA) by characterizing fibro-amyloid deposition using F-florbetapir and gallium-68-labeled fibroblast activation protein inhibitor-04 (Ga-FAPI-04) positron emission tomography (PET)/computed tomography (CT) imaging. The authors also proposed a novel molecular stratification methodology for prognosis.
Int J Mol Sci
December 2024
Clinic of Nuclear Medicine Central University Emergency Military Hospital "Dr Carol Davila", 10825 Bucharest, Romania.
Amyloidosis is a rare pathology characterized by protein deposits in various organs and tissues. Cardiac amyloidosis (CA) can be caused by various protein deposits, but transthyretin amyloidosis (ATTR) and immunoglobulin light chain (AL) are the most frequent pathologies. Protein misfolding can be induced by several factors such as oxidative stress, genetic mutations, aging, chronic inflammation, and neoplastic disorders.
View Article and Find Full Text PDFClin J Gastroenterol
January 2025
Department of Gastroenterology, Saiseikai Kanazawa Hospital, Ni-13-6 Akatsuchimachi, Kanazawa, Ishikawa, 920-0353, Japan.
Localized light chain amyloidosis is considered to be a plasmacytic B-cell lymphoproliferative disorder caused by antigenic induction. A hypothesis has been proposed that antigen-induced local plasmacytic B cells produce amyloidogenic proteins that are processed into amyloid fibrils in giant cells leading to amyloid fibril deposition. However, the inciting antigen exposure or immune response that signals plasmacytic B-cell infiltration, activation, and selection, is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!