The ribosome-binding GTPase HflX is required for manganese homeostasis in . While under normal conditions ΔhflX cells behave like wild type with respect to growth pattern and morphology, deletion of makes cells extremely sensitive to manganese, characterized by arrested cell growth and filamentation. Here we demonstrate that upon complementation by , manganese stress is relieved. In phenotypic studies done in a manganese-rich environment, ΔhflX cells were highly sensitive to antibiotics that bind the penicillin binding protein 3 (PBP3), suggesting that the manganese stress led to impaired peptidoglycan biosynthesis. An irregular distribution of dark bands of constriction along filaments, delocalization of the dark bands from midcell towards poles and subpoles, lack of septum formation and arrested cell division were observed in ΔhflX cells under manganese stress. However, chromosome replication and segregation of nucleoids were unaffected under these conditions, as observed from confocal microscopy imaging and FACS studies. We conclude that absence of HflX leads to manganese accumulation in cells, affecting cell septum formation, probably by modulating the activity of the cell division protein PBP3 (FtsI), a major component of the divisome apparatus. We propose that HflX acts as a gatekeeper, regulating the influx of manganese into the cell.
Download full-text PDF |
Source |
---|
Int J Mol Sci
January 2025
Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile.
Over recent decades, Northern Patagonia in Chile has seen significant growth in agriculture, livestock, forestry, and aquaculture, disrupting lake ecosystems and threatening native species. These environmental changes offer a chance to explore how anthropization impacts zooplankton communities from a molecular-ecological perspective. This study assessed the anthropogenic impact on by comparing its proteomes from two lakes: Llanquihue (anthropized) and Icalma (oligotrophic).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
ROS (i.e., reactive oxygen species) scavenging is a key function of various Mn-based enzymes, including superoxide dismutases (SODs) and catalases, which are actively linked to oxidative stress-related diseases.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India. Electronic address:
Phanerochaete chrysosporium (Pc), is a prominent lignin-degrading fungus which serves as an important source for lignin-degrading enzymes (LDEs). The present study was focused on a detailed in silico analysis and gene expression patterns of lignin peroxidases (PcLiPs), which is a significant class of LDEs. In spite of extensive research on P.
View Article and Find Full Text PDFFront Physiol
December 2024
Roth Lab, Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.
Introduction: Temperature and oxygen are two factors that profoundly affect survival limits of animals; too much or too little of either is lethal. However, humans and other animals can exhibit exceptional survival when oxygen and temperature are simultaneously low. This research investigates the role of oxygen in the cold shock death of Caenorhabditis elegans.
View Article and Find Full Text PDFMolecules
December 2024
College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia.
Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties. However, the current use of ZnO NPs is hindered by their potential cytotoxicity concerns, which are likely attributed to the generation of reactive oxygen species (ROS) and the dissolution of particles to ionic zinc. To reduce the cytotoxicity of ZnO NPs, transitional metals are introduced into ZnO lattices to modulate the ROS production and NP dissolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!