Reactive microglia and infiltrating peripheral monocytes have been implicated in many neurodegenerative diseases of the retina and CNS. However, their specific contribution in retinal degeneration remains unclear. We recently showed that peripheral monocytes that infiltrate the retina after ocular injury in mice become permanently engrafted into the tissue, establishing a proinflammatory phenotype that promotes neurodegeneration. In this study, we show that microglia regulate the process of neuroglia remodeling during ocular injury, and their depletion results in marked upregulation of inflammatory markers, such as , , and in the retina, and abnormal engraftment of peripheral CCR2 CX3CR1 monocytes into the retina, which is associated with increased retinal ganglion cell loss, retinal nerve fiber layer thinning, and pigmentation onto the retinal surface. Furthermore, we show that other types of ocular injuries, such as penetrating corneal trauma and ocular hypertension also cause similar changes. However, optic nerve crush injury-mediated retinal ganglion cell loss evokes neither peripheral monocyte response in the retina nor pigmentation, although peripheral CX3CR1 and CCR2 monocytes infiltrate the optic nerve injury site and remain present for months. Our study suggests that microglia are key regulators of peripheral monocyte infiltration and retinal pigment epithelium migration, and their depletion results in abnormal neuroglia remodeling that exacerbates neuroretinal tissue damage. This mechanism of retinal damage through neuroglia remodeling may be clinically important for the treatment of patients with ocular injuries, including surgical traumas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325007 | PMC |
http://dx.doi.org/10.4049/jimmunol.1800982 | DOI Listing |
Int J Mol Sci
December 2024
Neuropharmacology Laboratory, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.
Chronic cocaine use triggers inflammatory and oxidative processes in the central nervous system, resulting in impaired microglia. Mesenchymal stem cells, known for their immunomodulatory properties, have shown promise in reducing inflammation and enhancing neuronal survival. The study employed the cocaine self-administration model, focusing on ionized calcium-binding adaptor protein 1 (Iba-1) and cell morphology as markers for microglial impairment and PLX-PAD cells as a treatment for attenuating cocaine craving.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
Protein translation is crucial for fear extinction, a process vital for adaptive behavior and mental health, yet the underlying cell-specific mechanisms remain elusive. Using a Tet-On 3G genetic approach, we achieved precise temporal control over protein translation in the infralimbic medial prefrontal cortex () during fear extinction. In addition, our results reveal that the disruption of cytoplasmic polyadenylation element binding protein 1 (Cpeb1) leads to notable alterations in cell type-specific translational programs, thereby affecting fear extinction.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China.
Various mature tissue-resident cells exhibit progenitor characteristics following injury. However, the existence of endogenous stem cells with multiple lineage potentials in the adult spinal cord remains a compelling area of research. In this study, we present a cross-species investigation that extends from development to injury.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada.
Tissue inflammation is often broadly associated with cellular damage, yet sterile inflammation also plays critical roles in beneficial tissue remodeling. In the central nervous system, this is observed through a predominantly innate immune response in retinal vascular diseases such as age-related macular degeneration, diabetic retinopathy, and retinopathy of prematurity. Here, we set out to elucidate the dynamics of the immune response during progression and regression of pathological neovascularization in retinopathy.
View Article and Find Full Text PDFZhen Ci Yan Jiu
December 2024
First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine, Acupuncture and Moxibustion, Tianjin 300381.
Microglia, the main phagocytic cells in the brain, play a key role in inflammatory response and neuroprotection in ischemic stroke, and are potential targets for the treatment of ischemic stroke. Multiple studies have confirmed that the effect of acupuncture on ischemic stroke is closely related to its effect in regulating the activities of microglia. In the present paper, we reviewed the role of microglia in ischemic stroke and the current research status of acupuncture intervention, and prospects the future research direction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!