A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A point-of-care diagnostic for differentiating Ebola from endemic febrile diseases. | LitMetric

Hemorrhagic fever outbreaks such as Ebola are difficult to detect and control because of the lack of low-cost, easily deployable diagnostics and because initial clinical symptoms mimic other endemic diseases such as malaria. Current molecular diagnostic methods such as polymerase chain reaction require trained personnel and laboratory infrastructure, hindering diagnostics at the point of need. Although rapid tests such as lateral flow can be broadly deployed, they are typically not well-suited for differentiating among multiple diseases presenting with similar symptoms. Early detection and control of Ebola outbreaks require simple, easy-to-use assays that can detect and differentiate infection with Ebola virus from other more common febrile diseases. Here, we developed and tested an immunoassay technology that uses surface-enhanced Raman scattering (SERS) tags to simultaneously detect antigens from Ebola, Lassa, and malaria within a single blood sample. Results are provided in <30 min for individual or batched samples. Using 190 clinical samples collected from the 2014 West African Ebola outbreak, along with 163 malaria positives and 233 negative controls, we demonstrated Ebola detection with 90.0% sensitivity and 97.9% specificity and malaria detection with 100.0% sensitivity and 99.6% specificity. These results, along with corresponding live virus and nonhuman primate testing of an Ebola, Lassa, and malaria 3-plex assay, indicate the potential of the SERS technology as an important tool for outbreak detection and clinical triage in low-resource settings.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.aat0944DOI Listing

Publication Analysis

Top Keywords

febrile diseases
8
ebola
5
point-of-care diagnostic
4
diagnostic differentiating
4
differentiating ebola
4
ebola endemic
4
endemic febrile
4
diseases
4
diseases hemorrhagic
4
hemorrhagic fever
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!