A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Scattering characteristics of an exciton-plasmon nanohybrid made by coupling a monolayer graphene nanoflake to a carbon nanotube. | LitMetric

Scattering characteristics of an exciton-plasmon nanohybrid made by coupling a monolayer graphene nanoflake to a carbon nanotube.

J Phys Condens Matter

Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia.

Published: February 2019

AI Article Synopsis

  • The study explores a hybrid nanostructure made from a graphene nanoflake (GNF) and a carbon nanotube (CNT) that could offer better sensing abilities than they do individually, benefiting from their superior properties.
  • The research involves modeling the nanohybrid's scattering behavior using advanced quantum mechanics, allowing the authors to understand how the GNF and CNT interact at a quantum level.
  • Results indicate that this nanohybrid not only shows improved scattering properties but is also tunable based on various factors, making it promising for applications like cancer diagnosis through sensitive biosensing technologies.

Article Abstract

A hybrid nanostructure where a graphene nanoflake (GNF) is optically coupled to a carbon nanotube (CNT) could potentially possess enhanced sensing capabilities compared to the individual constituents whilst inheriting their high biocompatibility, favourable electrical, mechanical and spectroscopic properties. Therefore, in this paper, we investigate the scattering characteristics of an all-carbon exciton-plasmon nanohybrid which was made by coupling an elliptical GNF resonator to a semiconducting CNT gain element. We analytically model the nanohybrid as an open quantum system using cavity quantum electrodynamics. We derive analytical expressions for the dipole moment operator and the dipole response field of the GNF and characterize the Rayleigh scattering spectrum of the nanohybrid. These analytical expressions are valid for any arbitrary ellipsoidal nanoresonator coupled to a quantum emitter. Furthermore, we perform a detailed numerical analysis, the results of which indicate that the GNF-CNT nanohybrid exhibits enhanced and versatile scattering capabilities compared to the individual constituents. We show that the spectral signatures of the nanohybrid are highly tunable using a multitude of system parameters such as Fermi energy of the GNF, component dimensions, GNF-CNT separation distance and the permittivity of the submerging medium. We finally demonstrate the prospect of using the proposed nanohybrid to reconstruct the permittivity profile of a tumour. The high biocompatibility and high sensitivity to the dielectric properties of the environment make the proposed GNF-CNT nanohybrid an ideal candidate for such biosensing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/aaf845DOI Listing

Publication Analysis

Top Keywords

scattering characteristics
8
nanohybrid
8
exciton-plasmon nanohybrid
8
nanohybrid coupling
8
graphene nanoflake
8
carbon nanotube
8
capabilities compared
8
compared individual
8
individual constituents
8
high biocompatibility
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: