Interior x-ray diffraction tomography with low-resolution exterior information.

Phys Med Biol

CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL 32816, United States of America. Author to whom any correspondence should be addressed.

Published: January 2019

X-ray diffraction tomography (XDT) resolves spatially-variant XRD profiles within macroscopic objects, and provides improved material contrast compared to the conventional transmission-based computed tomography (CT). However, due to the small diffraction cross-section, XDT suffers from long imaging acquisition time, which could take tens of hours for a full scan using a table-top x-ray tube. In medical and industrial imaging applications, oftentimes only the XRD measurement within a region-of-interest (ROI) is required, which, together with the demand to reduce imaging time and radiation dose to the sample, motivates the development of interior XDT systems that scan and reconstruct only an internal region within the sample. The interior problem does not have a unique solution, and a direct inversion on the truncated projection data often leads to large reconstruction errors in ROI. To reduce the truncation artifacts, conventional attenuation-based interior reconstruction problems rely on a known region or piecewise constant constraint within the ROI. Here we propose a quasi-interior XDT scheme that incorporates a small fraction of projection information from the exterior region to assist ROI reconstruction. In the phantom simulation, a small amount (17% of exterior region) of added exterior projection data improves the reconstruction quality by ~50%. The addition of exterior samplings in the experiment demonstrates improved spatial and XRD profile reconstructions compared to total-variation-based reconstruction or sinogram extrapolation. We expect our quasi-interior XDT to obviate the requirement on prior knowledge of the object or its support, and to allow the ROI reconstruction to be performed with the fast, widely-used filtered back-projection algorithm for easy integration into real-time XDT imaging modules.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/aaf819DOI Listing

Publication Analysis

Top Keywords

x-ray diffraction
8
diffraction tomography
8
projection data
8
quasi-interior xdt
8
exterior region
8
roi reconstruction
8
xdt
6
reconstruction
6
exterior
5
roi
5

Similar Publications

Mesoporous materials have garnered significant interest because of their porous structure, large surface area and ease of surface functionalization to incorporate the functional groups of choice. Herein, chiral mesoporous silica nanoparticles (CMSNPs) were prepared using quaternary amino silane as the template, tetramethyl orthosilicate as the silica source and proline and cellulose as chiral selector. The developed CMSNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, BET surface area analysis and BJH pore size/volume analysis.

View Article and Find Full Text PDF

Given the suboptimal physical properties and distinctive geological conditions of deep coalbed methane reservoirs, any reservoir damage that occurs becomes irreversible. Consequently, the protection of these deep coalbed methane reservoirs is of paramount importance. This study employs experimental techniques such as scanning electron microscopy, X-ray diffraction, and micro-CT imaging to conduct a comprehensive analysis of the pore structure, mineral composition, fluid characteristics, and wettability of coal seams 3# and 15# in the northern Qinshui Basin of China.

View Article and Find Full Text PDF

Boosting the mechanical performance and fire resistivity of white ordinary portland cement pastes via biogenic mesoporous silica nanoparticles.

Sci Rep

January 2025

Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt.

This study investigates how biogenic mesoporous silica nanoparticles (MS-NPs) extracted from rice straw residues, a sustainable and economical bio-source, affect White Ordinary Portland Cement (WOPC) paste performance. A comprehensive investigation using varied fractions of 0.25, 0.

View Article and Find Full Text PDF

The advancement of active packaging for food conservation has attracted considerable interest over time. In the present study, we aims to create and examine active films composed of chitosan (CS), poly(vinyl alcohol) (PVA), and syzygium guineense plant extract (SYZ) for potential use in food preservation. We examined the impact of ethanol extracts from the SYZ plant on the films' tensile strength, physical, antibacterial, and anti-oxidant properties.

View Article and Find Full Text PDF

Green dyeing of cellulose diacetate fabric with disperse dyes in a liquid paraffin medium.

Int J Biol Macromol

January 2025

Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilisation of Bio-based Textile Materials, Wuhan Textile University, Wuhan 430200, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430200, China. Electronic address:

The conventional method of dyeing cellulose diacetate (CDA) fabric with disperse dyes consumes significant amounts of fresh water and dispersants, contributing to environmental pollution and health hazards. This study explored the use of liquid paraffin as an alternative to aqueous mediums for dyeing CDA fabric with Disperse Blue 56 dyes, eliminating the need for dispersants. An L orthogonal array was used to optimize dyeing conditions based on the color strength values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!