Controlling the nonlinear optical response of nanoscale metamaterials opens new exciting applications such as frequency conversion or flat metal optical elements. To utilize the already well-developed fabrication methods, a systematic design methodology for obtaining high nonlinearities is required. In this paper we consider an optimization-based approach, combining a multiparameter genetic algorithm with three-dimensional finite-difference time domain (FDTD) simulations. We investigate two choices of the optimization function: one which looks for plasmonic resonance enhancements at the frequencies of the process using linear FDTD, and another one, based on nonlinear FDTD, which directly computes the predicted nonlinear response. We optimize a four-wave-mixing process with specific predefined input frequencies in an array of rectangular nanocavities milled in a thin free-standing gold film. Both approaches yield a significant enhancement of the nonlinear signal. Although the direct calculation gives rise to the maximum possible signal, the linear optimization provides the expected triply resonant configuration with almost the same enhancement, while being much easier to implement in practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.8b03861 | DOI Listing |
Nano Lett
January 2025
Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany.
The advent of two-dimensional van der Waals materials is a frontier of condensed matter physics and quantum devices. However, characterizing such materials remains challenging due to the limitations of bulk material techniques, necessitating the development of specialized methods. Here, we investigate the superconducting properties of BiSrCaCuO flakes by integrating them with a hybrid superconducting microwave resonator.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
Two new rare earth borate NLO crystals, KNaSrYBO and RbBaLuBO, were successfully designed and synthesized, which feature NLO-active [BO] groups and [Y/LuO] polyhedra. They exhibit notably short UV absorption cutoff edges below 200 nm, wide band gaps exceeding 6.2 eV, and strong second-harmonic generation intensities that are comparable to KDP.
View Article and Find Full Text PDFRSC Adv
January 2025
Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal Rural do Semi-Árido (UFERSA) CEP 59625-900 Mossoró RN Brazil
Chalcones demonstrate significant absorption in the near ultraviolet-visible spectrum, making them valuable for applications such as solar cells, light-emitting diodes, and nonlinear optics. This study investigates four dibenzalacetone derivatives (DBAd), DBA, DBC, DEP, and DMA, examining the impact of electron-donating and electron-withdrawing groups and conjugation elongation on their electronic structure in solvents of varying polarities. Using the Polarizable Continuum Model (PCM) and time-dependent density functional theory (TD-DFT), we characterized the excited states of these compounds.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China.
Hyperbolic metamaterials (HMMs) have recently attracted significant research attention due to their hyperbolic wavevector iso-frequency contour, which leads to substantial local electric field (EF) enhancements that benefit optical processes, such as the nonlinear generation, quantum science, biomedical sensing, and more. However, three main challenges hinder their practical implementation: the difficulty in exciting their resonant modes using free-space incidence, the weak enhancement of surface EF, and the narrow spectral range of EF enhancements. Herein, we proposed cross-etched HMMs (CeHMMs) as a novel type of HMM, addressing these issues.
View Article and Find Full Text PDFAdv Mater
January 2025
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Blue phase liquid crystal (BPLC) lasers exhibit exceptional optical quality and tunability to external stimuli, holding significant promise for innovative developments in the field of flexible optoelectronics. However, there remain challenges for BPLC elastomer (BPLCE) lasers in maintaining good optical stability during stretching and varying temperature conditions. In this work, a stretchable laser is developed based on a well-designed BPLCE with a combination of partially and fully crosslinked networks, which can output a single-peak laser under small deformation (44.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!