Triclabendazole is a poorly-water soluble (0.24 μg/mL) compound classified into the Class II/IV of the Biopharmaceutical Classification System. It is the drug of choice to treat fascioliasis, a neglected parasitic disease worldwide disseminated. Triclabendazole is registered as veterinary medicine and it is only available for human treatment as 250 mg tablets. Thus, the aim of this work was to develop novel drug delivery systems based on nanotechnology approaches. The chitosan-based nanocapsules and nanoemulsions of triclabendazole were fully characterized regarding their particle size distribution, polydispersity index and zeta potential, in-vitro release and stability in biological media. Cytotoxicity evaluation and cellular uptake studies using CaCo-2 cell line were also investigated. The results indicated an average hydrodynamic size around ~160 nm were found for unloaded nanoemulsions which were slightly increased up to ~190 nm for loaded one. In contrast, the average hydrodynamic size of the nanocapsules increased from ~160 nm up to ~400 nm when loaded with triclabendazole. The stability studies upon 30 days storage at 4, 25 and 37°C showed that average size of nanoemulsions was not modified with varying amounts of loaded TCBZ while an opposite result was seen in case of loaded nanocapsules. In addition, a slight reduction of zeta potential values over time was observed in both triclabendazole nanosystems. Release of TCBZ from nanoformulations over 6 h in simulated gastric fluid was 9 to 16-fold higher than with untreated TCBZ dispersion. In phosphate buffer saline solution there was no drug release for neither nanocapsules nor nanoemulsions. Cell viabilities studies indicated that at certain concentrations, drug encapsulation can lower its cytotoxic effects when compared to untreated drug. Confocal laser scanning microscopy study has shown that nanocapsules strongly interacted with Caco-2 cells in vitro which could increase the passage time of triclabendazole after oral administration. The results of this study constitute the first step towards the development of nanoformulations intended for the oral delivery of anti-parasitic drugs of enhanced bioavailability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6291145 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207625 | PLOS |
Food Chem
January 2025
State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China. Electronic address:
Nanopesticides exhibit different residue patterns in crops after application compared to conventional formulations, thus affecting human dietary exposure. Residue, dissipation, and dietary exposure to tebuconazole nanoformulations (nanoemulsion and nano-capsules) and conventional formulations (suspension concentrate and micro-capsules) on wheat were investigated and compared. Nano-capsules (1950 μg/kg) and micro-capsules (1771 μg/kg) had significantly lower initial deposition on wheat-leaf than suspension concentrate (2666 μg/kg).
View Article and Find Full Text PDFFuture Med Chem
January 2025
Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil.
Flavonoids such as silibinin, hesperetin, and phloretin exhibit well-documented biological activities, including anti-inflammatory, cytoprotective, anticarcinogenic, and antioxidant effects. However, their clinical application remains limited due to challenges such as poor aqueous solubility, low bioavailability, and restricted intestinal absorption, which can significantly reduce their pharmacological efficacy. This review analyzed patents related to innovative pharmaceutical technologies for flavonoids.
View Article and Find Full Text PDFPharmaceutics
December 2024
Unit Operations Lab, School of Technology, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga 6681-Prédio 30, Bloco F, Sala 208, Porto Alegre 90619-900, Brazil.
Degradation by physical and chemical agents affects the properties of essential oils; therefore, this study aimed to protect the volatile compounds present in essential oils through biopolymer encapsulation. The (Lam) DC. essential oil was obtained by steam distillation at 2.
View Article and Find Full Text PDFFood Chem
February 2025
School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China. Electronic address:
Bioimpacts
February 2024
Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
Alpha-lipoic acid (ALA) has garnered significant attention for its potential therapeutic benefits across a wide spectrum of health conditions. Despite its remarkable antioxidant properties, ALA is hindered by challenges such as low bioavailability, short half-life, and unpleasant odor. To overcome these limitations and enhance ALA's therapeutic efficacy, various nanoparticulate drug delivery systems have been explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!