Shoulder reflexes integrate elbow information at "long-latency" delay throughout a corrective action.

J Neurophysiol

Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York.

Published: February 2019

Previous studies have demonstrated a progression of function when healthy subjects counter a sudden mechanical load. Short-latency reflexes are linked to local stretch of the particular muscle and its antagonist. Long-latency reflexes integrate stretch information from both local sources and muscles crossing remote joints appropriate for a limb's mechanical interactions. Unresolved is how sensory information is processed throughout the corrective response, since capabilities at some time can be produced by circuits acting at that delay and at briefer delays. One possibility is that local abilities are always expressed at a short-latency delay and integrative abilities are always expressed at a long-latency delay. Alternatively, the neural circuits may be altered over time, leading to a temporal shift in expressing certain abilities; a refractory period could retard integrative responses to a second perturbation, whereas priming could enable integrative responses at short latency. We tested between these three hypotheses in a shoulder muscle by intermixing trials of step torque with either torque pulses ( experiment 1) or double steps of torque ( experiment 2). The second perturbation occurred at 35, 60, and 110 ms after the first perturbation to probe processing throughout the corrective action. The second perturbation reliably evoked short-latency responses in the shoulder muscle linked to only shoulder motion and long-latency responses linked to both shoulder and elbow motion. This pattern is best accounted by the continuous action of controllers with fixed functions. NEW & NOTEWORTHY Sudden displacement of the limb evokes a short-latency reflex, 20-50 ms, based on local muscle stretch and a long-latency reflex based on integrating muscle stretch at different joints. A novel double-perturbation paradigm tested if these abilities are temporally conserved throughout the corrective response or are shifted (retarded or delayed) due to functional changes in the responsible circuits. Multi-joint integration was reliably expressed at a long-latency delay consistent with the continuous operation of circuits with fixed abilities.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00611.2018DOI Listing

Publication Analysis

Top Keywords

second perturbation
12
reflexes integrate
8
corrective action
8
corrective response
8
abilities expressed
8
expressed long-latency
8
long-latency delay
8
integrative responses
8
shoulder muscle
8
linked shoulder
8

Similar Publications

Unlabelled: "Single Model initial-condition Large Ensembles" (SMILEs) conducted with Earth system models have transformed our ability to quantify internal climate variability and forced climate change at local and regional scales. An important consideration in their experimental design is the choice of initialization procedure as this influences the duration of initial-condition memory, with implications for interpreting the temporal evolution of both the ensemble-mean and ensemble-spread. Here we leverage the strategic design of the 100-member Community Earth System Model version 2 (CESM2) SMILE to investigate the dependence of ensemble spread on the method of initialization (micro- vs.

View Article and Find Full Text PDF

Setpoint weighted PI-FOPD cascade controllers synthesis for unstable time-delayed processes satisfying prespecified safety margins.

ISA Trans

December 2024

Department of Electrical Engineering, Tungnan University, No. 152, Section 3, Peishen Rd., Shenkeng Dist., New Taipei 222, Taiwan. Electronic address:

This article introduces a novel setpoint weighted PI-FOPD (SWPI-FOPD) cascade controller with a prefilter. It further describes a four-stage design strategy that sequentially enhances tracking responses, reduces overshoot, and ensures robustness for unstable time-delayed (UTD) processes. The controller applies to integrating and non-integrating UTD processes of any order and does not necessitate model order reduction or delay approximation.

View Article and Find Full Text PDF

Anharmonic computations reveal an intense, narrow (20 cm, 0.043 μm) absorption feature at approximately 2160 cm (4.63 μm) in the vibrational spectra of 14 prototypical singly isocyano-substituted polycyclic aromatic hydrocarbons (NC-PAHs) attributed to the NC stretching mode.

View Article and Find Full Text PDF

Unlabelled: The composition of bacterial transcriptomes is determined by the transcriptional regulatory network (TRN). The TRN regulates the transition from one physiological state to another. Here, we use independent component analysis to monitor the composition of the transcriptome during the transition from the exponential growth phase to the stationary phase.

View Article and Find Full Text PDF

Excited state properties from the Bethe-Salpeter equation: State-to-state transitions and spin-orbit coupling.

J Chem Phys

December 2024

Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany.

The formalism to calculate excited state properties from the GW-Bethe-Salpeter equation (BSE) method is introduced, providing convenient access to excited state absorption, excited state circular dichroism, and excited state optical rotation in the framework of the GW-BSE method. This is achieved using the second-order transition density, which can be obtained by solving a set of auxiliary equations similar to time-dependent density functional theory (TD-DFT). The proposed formulation therefore leads to no increase in the formal computational complexity when compared to the corresponding ground state properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!