Lipid membrane permeation of drug molecules was investigated with Heterogeneous Dielectric Generalized Born (HDGB)-based models using solubility-diffusion theory and machine learning. Free energy profiles were obtained for neutral molecules by the standard HDGB and Dynamic HDGB (DHDGB) to account for the membrane deformation upon insertion of drugs. We also obtained hybrid free energy profiles where the neutralization of charged molecules was taken into account upon membrane insertion. The evaluation of the predictions was done against experimental permeability coefficients from Parallel Artificial Membrane Permeability Assays (PAMPA), and effects of partial charge sets, CGenFF, AM1-BCC, and OPLS, on the performance of the predictions were discussed. (D)HDGB-based models improved the predictions over the two-state implicit membrane models, and partial charge sets seemed to have a strong impact on the predictions. Machine learning increased the accuracy of the predictions, although it could not outperform the physics-based approach in terms of correlations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433486PMC
http://dx.doi.org/10.1021/acs.jcim.8b00648DOI Listing

Publication Analysis

Top Keywords

machine learning
12
membrane permeation
8
permeation drug
8
drug molecules
8
implicit membrane
8
free energy
8
energy profiles
8
account membrane
8
partial charge
8
charge sets
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!