In this review, we summarize the recent design strategies (2015-present) of nanomaterial-based vaccine delivery systems via multiple routes to induce robust protective immunity. The selected topics are focused on the novel design strategies of nanomaterial carriers for vaccine delivery. Inspired by recent advances, we also briefly introduce the emerging administration routes that may give rise to synergistic immune effects with advanced delivery systems. Ultimately, we present the existing challenges and survey the prospective development of various nanoparticle vaccine delivery systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8bm01197dDOI Listing

Publication Analysis

Top Keywords

vaccine delivery
16
delivery systems
16
design strategies
8
delivery
5
up-to-date vaccine
4
systems
4
systems robust
4
robust immunity
4
immunity elicited
4
elicited multifarious
4

Similar Publications

Hepatitis B virus (HBV) remains a critical public health issue in low- and middle-income countries (LMICs), particularly among pregnant women in Nigeria. Routine screening using rapid diagnostic kits is common in antenatal care, yet the accuracy of these tests can vary. This study aimed to determine the seroprevalencwe of HBV among pregnant women who had previously undergone screening using rapid diagnostic kits at Obafemi Awolowo Teaching Hospital, Ilesa, Osun State, Nigeria, to assess the effectiveness of initial screening and identify any missed cases.

View Article and Find Full Text PDF

GM-CSF and IL-21-armed oncolytic vaccinia virus significantly enhances anti-tumor activity and synergizes with anti-PD1 immunotherapy in pancreatic cancer.

Front Immunol

January 2025

Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.

Pancreatic cancer is one of the most aggressive cancers and poses significant challenges to current therapies because of its complex immunosuppressive tumor microenvironment (TME). Oncolytic viruses armed with immunoregulatory molecules are promising strategies to overcome limited efficacy and target inaccessible and metastatic tumors. In this study, we constructed a tumor-selective vaccinia virus (VV) with deletions of the TK and A49 genes (VVLΔTKΔA49, VVL-DD) using CRISPR-Cas9-based homologous recombination.

View Article and Find Full Text PDF

DNA vaccines are third-generation vaccines composed of plasmids that encode vaccine antigens. Their advantages include fast development, safety, stability, and cost effectiveness, which make them an attractive vaccine platform for genetic and infectious diseases. However, the low transfection efficiency of DNA vaccines results in poor performance in both larger animals and humans, thereby limiting their clinical use.

View Article and Find Full Text PDF

Rapid advances in vaccine technology are becoming increasingly important in tackling global health crises caused by respiratory virus infections. While traditional vaccines, primarily administered by intramuscular injection, have proven effective, they often fail to provide the broad upper respiratory tract mucosal immunity, which is urgently needed for first-line control of respiratory viral infections. Furthermore, traditional intramuscular vaccines may not adequately address the immune escape of emerging virus variants.

View Article and Find Full Text PDF

Metalloparticle-Engineered Pickering Emulsion Displaying AAV-Vectored Vaccine for Enhancing Antigen Expression and Immunogenicity Against Pathogens.

Adv Mater

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.

Recombinant adeno-associated viruses (rAAVs) have emerged as promising vaccine vectors due to their enduring efficacy with a single dose. However, insufficient cellular immune responses and the random and non-specific distribution of AAVs post-injection may hinder the development of AAV vaccines. Here, a novel Pickering emulsion platform stabilized by biomineralized manganese nanoparticles and aluminum hydroxide, which can rapidly and efficiently load AAVs, is reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!