Objective: The objective of this paper was to investigate differential pathways in sporadic amyotrophic lateral sclerosis (SALS) based on pathway network analysis.
Materials And Methods: To achieve this goal, first, differentially expressed genes (DEGs) between SALS and normal controls were identified, and a target network was defined as DEGs correlated interactions from the search tool for the retrieval of interacting genes/proteins (STRING). Second, topological centrality analysis was conducted on the target network to identify hub genes and hub network. Third, pathway network was constructed by taking intersections of Reactome database and STRING protein-protein interaction network. Finally, based on extracting the common interactions between target network, hub network and pathway network, we built randomized network, performed randomization test, and denoted differential pathways and hub differential pathways with P < 0.05.
Results: There were 485 DEGs and 627 interactions in the target network. The pathway network was comprised 117,370 interactions. What was more, we found that 217 pathways had intersections with the target network. By accessing randomization test and removing the intersected count <10, 21 differential pathways with P values were nearly to be 0 were obtained, of which 6 rightly were the hub differential pathways, such as gene expression, mRNA Splicing, and mRNA splicing-major pathway.
Conclusion: We have investigated 217 differential pathways and 21 significant differential pathways between SALS and normal controls based on network strategy. The findings might provide potential biomarkers for detection and therapy of SALS clinically and give great insights to reveal molecular mechanism underlying this disease. However, how these pathways cooperated with each other is still not clear, and future study should focus on this aspect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/0973-1482.199453 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Institute of Science and Technology Austria, AT-3400 Klosterneuburg, Austria.
Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Ocean Integrated Science, Chonnam National University, Yeosu, Korea.
Ensuring the supply of safe and high-quality drinking water can be compromised by the presence of chironomid larvae in drinking water treatment plants (DWTPs), which may contaminate municipal water systems through freshwater resources. Chironomids are dominant species known for their resilience to a broad range of extreme aquatic environments. This study aimed to identify the morphological characteristics and obtain genetic information of the chironomid Paratanytarsus grimmii found in the water intake source and freshwater resource of DWTPs in Korea, highlighting the potential possibility of a parthenogenetic chironomid outbreak within DWTP networks.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China.
Small molecules as nanomedicine carriers offer advantages in drug loading and preparation. Selecting effective small molecules for stable nanomedicines is challenging. This study used artificial intelligence (AI) to screen drug combinations for self-assembling nanomedicines, employing physiochemical parameters to predict formation via machine learning.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Traditional Chinese Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University of Medicine, Shanghai, China.
Based on network pharmacology and molecular docking methods, this study explored its active compounds and confirmed its potential mechanism of action against Hand-foot skin reaction induced by tumor-targeted drugs. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and UniProt Database were used to obtain the active ingredients and target proteins of Spatholobi Caulis. All hand-foot skin reaction (HFSR)-related targets were obtained with the help of the Human Gene Database, Online Mendelian Inheritance in Humans (OMIM), DisGeNET and DrugBank databases.
View Article and Find Full Text PDFChaos
January 2025
School of Mathematical Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
This study explores the impact of stochastic resetting on the random walk dynamics within scale-free (u,v)-flowers. Utilizing the generating function technique, we develop a recursive relationship for the generating function of the first passage time and establish a connection between the mean first passage time with and without resetting. Our investigation spans multiple scenarios, with the random walker starting from various positions and aiming to reach different target nodes, allowing us to identify the optimal resetting probability that minimizes the mean first passage time for each case.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!