imaging of structural, metabolic and functional brain changes in glaucoma.

Neural Regen Res

NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health; Department of Radiology, NYU School of Medicine, NYU Langone Health; Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, USA.

Published: March 2019

Glaucoma, the world's leading cause of irreversible blindness, is a condition for which elevated intraocular pressure is currently the only modifiable risk factor. However, the disorder can continue to progress even at reduced intraocular pressure. This indicates additional key factors that contribute to the etiopathogenesis. There has been a growing amount of literature suggesting glaucoma as a neurodegenerative disease of the visual system. However, it remains debatable whether the observed pathophysiological conditions are causes or consequences. This review summarizes recent in vivo imaging studies that helped advance the understanding of early glaucoma involvements and disease progression in the brains of humans and experimental animal models. In particular, we focused on the non-invasive detection of early structural and functional brain changes before substantial clinical visual field loss in glaucoma patients; the eye-brain interactions across disease severity; the metabolic changes occurring in the brain's visual system in glaucoma; and, the widespread brain involvements beyond the visual pathway as well as the potential behavioral relevance. If the mechanisms of glaucomatous brain changes are reliably identified, novel neurotherapeutics that target parameters beyond intraocular pressure lowering can be the promise of the near future, which would lead to reduced prevalence of this irreversible but preventable disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334611PMC
http://dx.doi.org/10.4103/1673-5374.243712DOI Listing

Publication Analysis

Top Keywords

brain changes
12
intraocular pressure
12
functional brain
8
visual system
8
glaucoma
6
imaging structural
4
structural metabolic
4
metabolic functional
4
brain
4
changes
4

Similar Publications

Shaping the structural dynamics of motor learning through cueing during sleep.

Sleep

January 2025

UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.

Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).

View Article and Find Full Text PDF

Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.

View Article and Find Full Text PDF

Children and adolescents with neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) may be more susceptible to early life stress compared to their neurotypical peers. This increased susceptibility may be linked to regionally-specific changes in the striatum and amygdala, brain regions sensitive to stress and critical for shaping maladaptive behavioural responses. This study examined early life stress and its impact on striatal and amygdala development in 62 children and adolescents (35 males, mean age = 10.

View Article and Find Full Text PDF

Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.

View Article and Find Full Text PDF

Objective: Post-stroke depression (PSD) affects approximately 40% of stroke survivors, with cognitive deficits being frequently observed. Transcranial Direct Current Stimulation (tDCS) has shown promise in improving cognitive performance in stroke patients. We explored the effects of tDCS on cognitive performance in PSD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!