The study of the drivers that shape spatial genetic structure across heterogeneous landscapes is one of the main approaches used to understand population dynamics and responses in changing environments. While the Isolation-by-Distance model (IBD) assumes that genetic differentiation increases among populations with geographical distance, the Isolation-by-Resistance model (IBR) also considers geographical barriers and other landscape features that impede gene flow. On the other hand, the Isolation-by-Environment model (IBE) explains genetic differentiation through environmental differences between populations. Although spatial genetic studies have increased significantly in recent years, plants from alpine ecosystems are highly underrepresented, even though they are great suitable systems to disentangle the role of the different factors that structure genetic variation across environmental gradients. Here, we studied the spatial genetic structure of the Mediterranean alpine specialist across its southernmost distribution limit. We sampled three populations across an altitudinal gradient from 1850 to 2400 m, and we replicated this sample over three mountain ranges aligned across an E-W axis in the central part of the Iberian Peninsula. We genotyped 20 individuals per population based on eight microsatellite markers and used different landscape genetic tools to infer the role of topographic and environmental factors in shaping observed patterns along the altitudinal gradient. We found a significant genetic structure among the studied populations which was related to the orography and E-W configuration of the mountain ranges. IBD pattern arose as the main factor shaping population genetic differentiation. Geographical barriers between mountain ranges also affected the spatial genetic structure (IBR pattern). Although environmental variables had a significant effect on population genetic diversity parameters, no IBE pattern was found on genetic structure. Our study reveals that IBD was the driver that best explained the genetic structure, whereas environmental factors also played a role in determining genetic diversity values of this dominant plant of Mediterranean alpine environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277476 | PMC |
http://dx.doi.org/10.3389/fpls.2018.01698 | DOI Listing |
Int J Biol Macromol
January 2025
College of Animal Science and Technology, Yangzhou University, Yangzhou, China. Electronic address:
Coccidiosis, a parasitic disease caused by Eimeria protozoa that parasitizes intestinal tissues of chicken, poses a challenge to the development of the poultry industry. circRNAs are a class of circular RNA macromolecules crucial in the immune response to pathogens. Previous studies have shown that gga-miR-2954 inhibits the inflammatory response to Eimeria tenella (E.
View Article and Find Full Text PDFSci Total Environ
January 2025
Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of Chin), Gongzhuling 136100, Jilin, China. Electronic address:
Application of herbicide-degrading bacteria is an effective strategy to remove herbicide in soil. However, the ability of bacteria to degrade a herbicide is often severely limited in the presence of other pesticide. In this study, the atrazine-degrading strain Klebsiella varicola FH-1 and acetochlor-degrading strain Bacillus Aryabhatti LY-4 were used as parent strains to construct the recombinant RH-92 strain through protoplast fusion technology.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China; Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China. Electronic address:
Bacterial adaptive immunity, driven by CRISPR-Cas systems, protects against foreign nucleic acids from mobile genetic elements (MGEs), like bacteriophages. The type I-E CRISPR-Cas system employs the Cascade (CRISPR-associated complex for antiviral defense) complex for target DNA cleavage, guided by crRNA. Anti-CRISPR (Acr) proteins, such as AcrIE7, counteract this defense by inhibiting Cascade activity.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Chemistry, Sarojini Naidu College for Women, Kolkata 700028, India. Electronic address:
Peptide nucleic acids (PNA), synthetic molecules comprising a peptide-like backbone and natural and unnatural nucleobases, have garnered significant attention for their potential applications in gene editing and other biomedical fields. The unique properties of PNA, particularly enhanced stability/specificity/affinity towards targeted DNA and RNA sequences, achieved significant attention recently for gene silencing, gene correction, antisense therapy, drug delivery, biosensing and other various diagnostic aspects. This review explores the structure, properties, and potential of PNA in transforming genetic engineering including potent biomedical challenges.
View Article and Find Full Text PDFBlood Coagul Fibrinolysis
December 2024
Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, China.
Background: Congenital factor VII (FVII) deficiency is a genetic disorder characterized by decreased FVII activity, which sometimes leads to fatal bleeding. Numerous variants have been found in FVII deficiency, but mutations vary among patients. Each mutation deserves further exploration for each patient at risk of bleeding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!