The hexosamine biosynthetic pathway (HBP) generates the substrate for the O-linked β-N-acetylglucosamine (O-GlcNAc) modification of proteins. The HBP also serves as a stress sensor and has been reported to be involved with nuclear factor of activated T-cells (NFAT) activation, which can contribute to multiple cellular processes including cell metabolism, proliferation, and inflammation. In our previously published report, Fibroblast Growth Factor (FGF) 23, an important endocrine pro-inflammatory mediator, was shown to activate the FGFR4/phospholipase Cγ (PLCγ)/nuclear factor of activated T-cells (NFAT) signaling in chronic inflammatory airway diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Here, we demonstrate that FGF23 increased the O-GlcNAc modification of proteins in HBECs. Furthermore, the increase in O-GlcNAc levels by FGF23 stimulation resulted in the downstream activation of NFAT and secretion of interleukin-6 (IL-6). Conversely, inhibition of FGF23 signaling and/or O-GlcNAc transferase (OGT)/O-GlcNAc reversed these effects. Collectively, these data suggest that FGF23 induced IL-6 upregulation and secretion is, at least, partially mediated via the activation of the HBP and O-GlcNAc levels in HBECs. These findings identify a novel link whereby FGF23 and the augmentation of O-GlcNAc levels regulate airway inflammation through NFAT activation and IL-6 upregulation in HBECs. The crosstalk between these signaling pathways may contribute to the pathogenesis of chronic inflammatory airway diseases such as COPD and CF as well as metabolic syndromes, including diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277595 | PMC |
http://dx.doi.org/10.3389/fendo.2018.00708 | DOI Listing |
Front Immunol
January 2025
Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.
Background: Hypomorphic mutations in the () gene cause a glycosylation disorder that leads to immunodeficiency. It is often associated with recurrent infections and atopy. The exact etiology of this condition remains unclear.
View Article and Find Full Text PDFPrev Nutr Food Sci
December 2024
Aging and Metabolism Research Group, Food Functionality Research, Korea Food Research Institute, Wanju 55365, Korea.
Vascular smooth muscle cells (VSMCs) undergo metabolic pathway transitions, including aerobic glycolysis, fatty acid oxidation, and amino acid metabolism, which are important for their function. Metabolic dysfunction in VSMCs can lead to age-related vascular diseases. -GlcNAcylation, a nutrient-dependent posttranslational modification linked specifically to glucose metabolism, plays an important role in this context.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea.
Patients with estrogen receptor-positive breast cancer undergoing continuous adjuvant hormone therapy often experience delayed recurrence with tamoxifen use, potentially causing adverse effects. However, the lack of biomarkers hampers patient selection for extended endocrine therapy. This study aimed to elucidate the molecular mechanisms underlying delayed recurrence and identify biomarkers.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China.
O-linked N-acetylglucosamine transferase (OGT)-catalyzed O-linked N-acetylglucosamine glycosylation (O-GlcNAcylation) is closely associated with diabetes progression. This study aims to investigate the mechanism of OGT in regulating endothelial dysfunction in gestational diabetes mellitus (GDM). Expressions of OGT, O-linked N-acetylglucosamine (O-GlcNAc), enhancer of zeste homolog 2 (EZH2), and HEK27me3 in human umbilical vein endothelial cells (HUVECs) and GDM-derived HUVECs (GDM-HUVECs) were assessed by western blot.
View Article and Find Full Text PDFCell Death Dis
December 2024
The Institute of Genetics and Cytology, Northeast Normal University, 130024, Changchun, China.
O-GlcNAcylation catalyzed by O-GlcNAc transferase (OGT) plays an important role in the regulation of tumor glycolysis. However, the mechanism underlying OGT regulation remains largely unknown. Here, we showed that coactivator associated arginine methyltransferase 1 (CARM1) sensed changes of extracellular glucose levels in non-small cell lung cancer (NSCLC) cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!