Sleep is critically important to consolidate information learned throughout the day. Slow-wave sleep (SWS) serves to consolidate declarative memories, a process previously modulated with open-loop non-invasive electrical stimulation, though not always effectively. These failures to replicate could be explained by the fact that stimulation has only been performed in open-loop, as opposed to closed-loop where phase and frequency of the endogenous slow-wave oscillations (SWOs) are matched for optimal timing. The current study investigated the effects of closed-loop transcranial Alternating Current Stimulation (tACS) targeting SWOs during sleep on memory consolidation. 21 participants took part in a three-night, counterbalanced, randomized, single-blind, within-subjects study, investigating performance changes (correct rate and F1 score) on images in a target detection task over 24 h. During sleep, 1.5 mA closed-loop tACS was delivered in phase over electrodes at F3 and F4 and 180° out of phase over electrodes at bilateral mastoids at the frequency (range 0.5-1.2 Hz) and phase of ongoing SWOs for a duration of 5 cycles in each discrete event throughout the night. Data were analyzed in a repeated measures ANOVA framework, and results show that verum stimulation improved post-sleep performance specifically on generalized versions of images used in training at both morning and afternoon tests compared to sham, suggesting the facilitation of schematization of information, but not of rote, veridical recall. We also found a surprising inverted U-shaped dose effect of sleep tACS, which is interpreted in terms of tACS-induced faciliatory and subsequent refractory dynamics of SWO power in scalp EEG. This is the first study showing a selective modulation of long-term memory generalization using a novel closed-loop tACS approach, which holds great potential for both healthy and neuropsychiatric populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277682 | PMC |
http://dx.doi.org/10.3389/fnins.2018.00867 | DOI Listing |
Front Neurosci
November 2024
Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland.
Ther Adv Chronic Dis
November 2024
Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan.
Background: Severe upper extremity paresis due to stroke is a significant clinical sequela. Neuromuscular electrical stimulation (NMES)-based rehabilitation has demonstrated promising results along with cortical plasticity. Transcranial alternating current stimulation (tACS) has gained attention due to its unique ability to entrain endogenous oscillatory brain rhythms with injected AC frequency, offering the potential for modifying brain conditions to enhance rehabilitative interventions.
View Article and Find Full Text PDFBMC Psychiatry
September 2024
Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Charité Mitte, 10117, Berlin, Germany.
Background: Alcohol use disorder (AUD) poses a significant global health challenge. Traditional management strategies often face high relapse rates, leading to a need for innovative approaches. Mindfulness-based relapse prevention (MBRP) has emerged as a promising intervention to enhance cognitive control, reduce cue-related craving and improve interoceptive processing.
View Article and Find Full Text PDFBrain Sci
July 2024
Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai 519031, China.
Transcranial electrical brain stimulation techniques like transcranial direct current (tDCS) and transcranial alternating current (tACS) have emerged as potential tools for treating neurological diseases by modulating cortical excitability. These techniques deliver small electric currents to the brain non-invasively through electrodes on the scalp. tDCS uses constant direct current which weakly alters the membrane voltage of cortical neurons, while tACS utilizes alternating current to target and enhance cortical oscillations, though the underlying mechanisms are not fully understood more specifically.
View Article and Find Full Text PDFBrain Stimul
August 2024
Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany. Electronic address:
Background: Prior work has shown that transcranial alternating current stimulation (tACS) of parietooccipital alpha oscillations (8-14 Hz) can modulate working memory (WM) performance as a function of the phase lag to endogenous oscillations. However, leveraging this effect using real-time phase-tuned tACS has not been feasible so far due to stimulation artifacts preventing continuous phase tracking.
Objectives And Hypothesis: We aimed to develop a system that tracks and adapts the phase lag between tACS and ongoing parietooccipital alpha oscillations in real-time.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!