BASILIScan: a tool for high-throughput analysis of intrinsic disorder patterns in homologous proteins.

BMC Genomics

Section of Virology, Department of Medicine, St Mary's Hospital, Imperial College London, London, W2 1PG, UK.

Published: December 2018

Background: Intrinsic structural disorder is a common property of many proteins, especially in eukaryotic and virus proteomes. The tendency of some proteins or protein regions to exist in a disordered state usually precludes their structural characterisation and renders them especially difficult for experimental handling after recombinant expression.

Results: A new intuitive, publicly-available computational resource, called BASILIScan, is presented here. It provides a BLAST-based search for close homologues of the protein of interest, integrated with a simultaneous prediction of intrinsic disorder together with a robust data viewer and interpreter. This allows for a quick, high-throughput screening, scoring and selection of closely-related yet highly structured homologues of the protein of interest. Comparative parallel analysis of the conservation of extended regions of disorder in multiple sequences is also offered. The use of BASILIScan and its capacity for yielding biologically applicable predictions is demonstrated. Using a high-throughput BASILIScan screen it is also shown that a large proportion of the human proteome displays homologous sequences of superior intrinsic structural order in many related species.

Conclusion: Through the swift identification of intrinsically stable homologues and poorly conserved disordered regions by the BASILIScan software, the chances of successful recombinant protein expression and compatibility with downstream applications such as crystallisation can be greatly increased.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6290515PMC
http://dx.doi.org/10.1186/s12864-018-5322-5DOI Listing

Publication Analysis

Top Keywords

intrinsic disorder
8
intrinsic structural
8
homologues protein
8
protein interest
8
basiliscan
5
basiliscan tool
4
tool high-throughput
4
high-throughput analysis
4
intrinsic
4
analysis intrinsic
4

Similar Publications

Shorter and inflexible intrinsic neural timescales of the self in schizophrenia.

J Psychiatry Neurosci

January 2025

From the Faculty of Medicine, University of Ottawa, Ottawa, Ont. (Djimbouon); the Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, Ottawa, Ont. (Djimbouon, Northoff); the Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany (Klar); and the Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany (Klar).

Background: Schizophrenia is hypothesized to involve a disturbance in the temporal dynamics of self-processing, specifically within the interoceptive, exteroceptive, and cognitive layers of the self. This study aimed to investigate the intrinsic neural timescales (INTs) within these self-processing layers among people with schizophrenia.

Methods: We conducted a functional magnetic resonance imaging (fMRI) study to investigate INTs, as measured by the autocorrelation window, among people with schizophrenia and healthy controls during both resting-state and task (memory encoding and retrieval) conditions.

View Article and Find Full Text PDF

Inflammation and Coagulation in Neurologic and Psychiatric Disorders.

Semin Thromb Hemost

January 2025

Department of Neurology, Sheba Medical Center, Tel Ha'Shomer, Israel.

Coagulation factors are intrinsically expressed in various brain cells, including astrocytes and microglia. Their interaction with the inflammatory system is important for the well-being of the brain, but they are also crucial in the development of many diseases in the brain such as stroke and traumatic brain injury. The cellular effects of coagulation are mediated mainly by protease-activated receptors.

View Article and Find Full Text PDF

Ovarian clear cell carcinoma (OCCC) accounts for ~10% of all epithelial ovarian cancers and is considered a different entity from the more common high-grade serous ovarian carcinoma (HGSC), with distinct clinical presentations, different risk, and prognostic factors, and specific molecular features. Most OCCCs are diagnosed at an early stage and show favorable outcomes, in contrast to those diagnosed at advanced stages, which exhibit intrinsic resistance to platinum-based chemotherapy regimens and a very poor prognosis. The standard treatment of advanced OCCC is currently based on primary debulking surgery followed by platinum-based chemotherapy according to recent international guidelines.

View Article and Find Full Text PDF

and are two phylogenetically related bacterial pathogens that exhibit extreme intrinsic resistance when they enter into a dormancy-like state. This enables both pathogens to survive extended periods in growth-limited environments. Survival is dependent upon their ability to undergo developmental transitions into two phenotypically distinct variants, one specialized for intracellular replication and another for prolonged survival in the environment and host.

View Article and Find Full Text PDF

Background: Small Intestinal Bacterial Overgrowth (SIBO) has been implicated in the pathophysiology of chronic liver disease (CLD). We conducted a systematic review and meta-analysis to assess and compare the prevalence of SIBO among CLD patients (with and without with complications of end stage liver disease) and healthy controls.

Methods: Electronic databases were searched from inception up to July-2024 for case-control studies reporting SIBO in CLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!