Skin color disorders can be caused by various factors, such as excessive exposure to sunlight, aging and hormonal imbalance during pregnancy, or taking some medications. Kojic acid (KA) is a natural metabolite produced by fungi that has the ability to inhibit tyrosinase activity in synthesis of melanin. The major applications of KA and its derivatives in medicine are based on their biocompatibility, antimicrobial and antiviral, antitumor, antidiabetic, anticancer, anti-speck, anti-parasitic, and pesticidal and insecticidal properties. In addition, KA and its derivatives are used as anti-oxidant, anti-proliferative, anti-inflammatory, radio protective and skin-lightening agent in skin creams, lotions, soaps, and dental care products. KA has the ability to act as a UV protector, suppressor of hyperpigmentation in human and restrainer of melanin formation, due to its tyrosinase inhibitory activity. Also, KA could be developed as a chemo sensitizer to enhance efficacy of commercial antifungal drugs or fungicides. In general, KA and its derivatives have wide applications in cosmetics and pharmaceutical industries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2018.12.006 | DOI Listing |
Pharmaceuticals (Basel)
December 2024
Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy.
The primary method used to pharmacologically arrest cancer development and its metastasis is to disrupt the cell division process. There are a few approaches that may be used to meet this objective, mainly through inhibiting DNA replication or mitosis. Despite intensive studies on new chemotherapeutics, the biggest problem remains the side effects associated with the inhibition of cell division in non-tumoural host cells.
View Article and Find Full Text PDFMolecules
January 2025
Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
Fifteen compounds (-) constructed on a hybrid structure combining a β-phenyl-α,β-unsaturated carbonyl template and a 2-aminothiazol-4(5)-one scaffold were designed and synthesized as potential novel anti-tyrosinase substances. Two compounds ( and ) showed more potent inhibition against mushroom tyrosinase than kojic acid, and the inhibitory activity of (IC value: 1.60 μM) was 11 times stronger than that of kojic acid.
View Article and Find Full Text PDFmSphere
January 2025
United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, Japan.
RNA-binding protein Nrd1 plays a role in RNA polymerase II transcription termination. In this study, we showed that the orthologous NrdA is important in global mRNA expression and secondary metabolism in species. We constructed an conditional expression strain using the Tet-On system in mut.
View Article and Find Full Text PDFAn Acad Bras Cienc
January 2025
Universidade Federal do Pará, Instituto de Ciências Exatas e Naturais, Laboratório de Investigação Sistemática em Biotecnologia e Biodiversidade Molecular, Rua Augusto Corrêa, 01, 66075-110 Belém, PA, Brazil.
In the present study, 5-Hydroxy-2-(Oleoyloxymethyl) -4H-pyran-4-one (KMO 3), and their chelated with Cu(II) and Fe(III) ions were synthesized to explore their inhibitory activity against tyrosinase and cytotoxicity. To this end, the structures of the obtained compounds were confirmed by ATR/FT-IR, 13C and 1H-NMR, and UV-vis techniques. The results show that chelating fatty ester presents the bands at 1567m, 1511w cm-1 attributed to the coordinated carbonyl (Cu(II)←[O=C]2), and the bands at 1540m, 1519m cm-1 which were attributed to the coordinated carbonyl (Fe(III)←[O=C]3).
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia University of Belgrade Belgrade Serbia.
(L.) Roxb. and (L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!