50-Hz MF does not affect global DNA methylation of SH-SY5Y cells treated with the neurotoxin MPP.

Bioelectromagnetics

Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy.

Published: January 2019

Exposure to extremely low frequency magnetic fields (ELF-MFs) has been associated with an increased risk of neurodegenerative disorders. The underlying mechanisms, however, are still debated. Since epigenetics play a key role in the neurodegenerative process, we investigated whether exposure to ELF-MF (50 Hz, 1 mT) might affect global DNA methylation of SH-SY5Y dopaminergic-like neuroblastoma cells. We assessed the percentage of 5-methylcytosine (5-mC) of three repetitive interspersed sequences (ALU, LINE-1, or SATα), through pyrosequencing analysis. We demonstrated that ELF exposure (up to 72 h) does not induce any change in the methylation pattern of ALU, LINE-1, and SATα in both proliferating and differentiated SH-SY5Y cells. Furthermore, when administered in combination with 1-methyl-4-phenylpyridinium (MPP ), a neurotoxin mimicking the Parkinson's Disease (PD) phenotype, ELF-MF exposure does not trigger any modulation in the percentage of 5-mC of the repetitive elements. Our findings demonstrate that exposure to 50-Hz MF does not affect global DNA methylation in proliferating and dopaminergic differentiated SH-SY5Y cells, either under basal culture conditions or under neurotoxic stress. Bioelectromagnetics. 40:33-41, 2019. © 2018 Bioelectromagnetics Society.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bem.22158DOI Listing

Publication Analysis

Top Keywords

affect global
12
global dna
12
dna methylation
12
sh-sy5y cells
12
50-hz affect
8
methylation sh-sy5y
8
alu line-1
8
line-1 satα
8
differentiated sh-sy5y
8
exposure
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!