Bacterial RNA polymerase (RNAP) serves as a primase during replication of single-stranded plasmids and filamentous phages. Primer RNA (prRNA) synthesis from the origin regions of these replicons depends on the σ factor that normally participates in promoter recognition. However, it was proposed that σ may not be required for origin recognition but is rather involved in RNA extension by RNAP. Here, by analyzing the natural replication origin of bacteriophage M13 and synthetic ssDNA templates, we show that interactions of σ with promoter-like motifs stabilize priming complexes and can control prRNA synthesis by trapping RNAP on the template. Thus, the σ factor is involved in both DNA recognition and RNA priming, unifying its functions in transcription initiation from double- and single-stranded templates.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1873-3468.13312DOI Listing

Publication Analysis

Top Keywords

primer rna
8
bacterial rna
8
rna polymerase
8
prrna synthesis
8
rna
6
dual role
4
role factor
4
factor primer
4
rna synthesis
4
synthesis bacterial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!