While previous studies assessed corticospinal excitability changes during and after motor imagery (MI) or action observation (AO) combined with peripheral nerve electrical stimulation (ES), we examined, for the first time, the time course of corticospinal excitability changes for MI during AO combined with ES (AO-MI + ES) using transcranial magnetic stimulation to measure motor evoked potentials (MEPs) in healthy individuals. Fourteen healthy volunteers participated in the following three sessions on different days: AO-MI alone, ES alone, and AO-MI + ES. In the AO-MI task, participants imagined squeezing and relaxing a ball, along with the respective actions shown in a movie, while passively holding the ball. We applied ES (intensity, 90% of the motor threshold) to the ulnar nerve at the wrist, which innervates the first dorsal interosseous (FDI) muscle. We assessed the FDI muscle MEPs at baseline and after every 5 min of the task for a total of 20 min. Additionally, participants completed the Vividness of Movement Imagery Questionnaire-2 (VMIQ-2) at the beginning of the experiment. Compared to baseline, AO-MI + ES significantly increased corticospinal excitability after 10 min, while AO-MI or ES alone had no effect on corticospinal excitability after 20 min. Moreover, the AO-MI + ES-induced cortical excitability changes were correlated with the VMIQ-2 scores for visual and kinaesthetic imagery. Collectively, our findings indicate that AO-MI + ES induces cortical plasticity earlier than does AO-MI or ES alone and that an individual's imagery ability plays an important role in inducing cortical excitability changes following AO-MI + ES.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-018-5454-5DOI Listing

Publication Analysis

Top Keywords

corticospinal excitability
20
excitability changes
16
time course
8
motor imagery
8
imagery action
8
action observation
8
observation combined
8
combined peripheral
8
peripheral nerve
8
nerve electrical
8

Similar Publications

The embodied approach to language meaning suggests that negation with action verbs decreases activation of the negated concept, reflected in reduced motor-evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS). This study aims to explore how action negation influences inhibitory and facilitatory mechanisms within the primary motor cortex (M1) using paired-pulse TMS (ppTMS). We evaluated corticospinal excitability (CSE), short intracortical inhibition (SICI), indexing GABAA activity, and intracortical facilitation (ICF), related to glutamatergic activity.

View Article and Find Full Text PDF

Previous research on resting muscles has shown that inter-pulse interval (IPI) duration influences transcranial magnetic stimulation (TMS) responses, which can introduce serious confounding variables into investigations if not accounted for. However, it is far less clear how IPI influences TMS responses in active muscles. Thus, the purpose of this study was to examine the relationship between IPI and corticospinal excitability during submaximal isometric elbow flexion.

View Article and Find Full Text PDF

Effects of Lactate on Corticospinal Excitability: A Scoping Review.

Int J Exerc Sci

December 2024

Laboratory for Brain Recovery and Function, Dalhousie University, Halifax, NS, CAN.

Aerobic exercise has been shown to impact corticospinal excitability (CSE), however the mechanism(s) by which this occurs is unclear. Some evidence suggests an increase in blood lactate concentration resulting from exercise may be what is driving these changes in corticospinal excitability. The extent of literature examining this effect and whether it is consistent across the literature is unknown.

View Article and Find Full Text PDF

Evaluation of objective methods for analyzing ipsilateral motor evoked potentials in stroke survivors with chronic upper extremity motor impairment.

J Neural Eng

January 2025

Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, 4229 Pearl Road, Suite N4-13, Cleveland, Ohio, 44109-1998, UNITED STATES.

Ipsilateral motor evoked potentials (iMEPs) are believed to represent cortically evoked excitability of uncrossed brainstem-mediated pathways. In the event of extensive injury to (crossed) corticospinal pathways, which can occur following a stroke, uncrossed ipsilateral pathways may serve as an alternate resource to support the recovery of the paretic limb. However, iMEPs, even in neurally intact people, can be small, infrequent, and noisy, so discerning them in stroke survivors is very challenging.

View Article and Find Full Text PDF

Acute hypoalgesic and neurophysiological responses to lower-limb ischaemic preconditioning.

Exp Brain Res

January 2025

Faculty of Sport, Technology and Health Sciences, St. Mary's University, Twickenham, Middlesex, UK.

The aim of this study was to assess if ischaemic preconditioning (IPC) can reduce pain perception and enhance corticospinal excitability during voluntary contractions. In a randomised, within-subject design, healthy participants took part in three experimental visits after a familiarisation session. Measures of pressure pain threshold (PPT), maximum voluntary isometric force, voluntary activation, resting twitch force, corticospinal excitability and corticospinal inhibition were performed before and ≥10 min after either, unilateral IPC on the right leg (3 × 5 min); a sham protocol (3 × 1 min); or a control (no occlusion).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!