It has been demonstrated that the liver remarkably alter its tissue structures during regeneration, and various types of liver stem or progenitor cells locating in specific areas in the liver tissue contribute to regeneration. Therefore, it is important to analyze the dynamic rearrangement of the liver tissue structures in 3D for better understanding the process and mechanism of liver regeneration. Here we describe a macroscopic analysis method to visualize the whole 3D structure of the vasculatures and the biliary tree, which are dynamically remodeled during regeneration, and a microscopic analysis method to visualize detailed structures at the cellular level, which can compensate what cannot be detected in the macroscopic analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-8961-4_17 | DOI Listing |
Biol Reprod
January 2025
Inner Mongolia SK·Xing Animal Breeding and Breeding Biotechnology Research Institute Co., Ltd, Hohhot 011517, China.
Economic losses in cattle farms are frequently associated with failed pregnancies. Some studies found that the transcriptomic profiles of blood and endometrial tissues in cattle with varying pregnancy outcomes display discrepancies even before artificial insemination (AI) or embryo transfer (ET). In the study, 330 samples from seven distinct sources and two tissue types were integrated and divided into two groups based on the ability to establish and maintain pregnancy after AI or ET: P (pregnant) and NP (nonpregnant).
View Article and Find Full Text PDFDentomaxillofac Radiol
January 2025
Department of Oral and Maxillofacial Radiology, School of Dentistry, Pusan National University, Yangsan, 50612, Korea.
Objectives: This study aimed to develop an automated method for generating clearer, well-aligned panoramic views by creating an optimized three-dimensional (3D) reconstruction zone centered on the teeth. The approach focused on achieving high contrast and clarity in key dental features, including tooth roots, morphology, and periapical lesions, by applying a 3D U-Net deep learning model to generate an arch surface and align the panoramic view.
Methods: This retrospective study analyzed anonymized cone-beam CT (CBCT) scans from 312 patients (mean age 40 years; range 10-78; 41.
Biol Open
January 2025
Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
Reproducing intestinal cells in vitro is important in pharmaceutical research and drug development. Caco-2 cells and human iPS cell-derived intestinal epithelial cells are widely used, but few evaluation systems can mimic the complex crypt-villus-like structure. We attempted to generate intestinal cells mimicking the three-dimensional structure from human iPS cells.
View Article and Find Full Text PDFCell Oncol (Dordr)
January 2025
College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, 100029, China.
Purpose: Intrahepatic cholangiocarcinoma (ICC) is a common primary hepatic tumors with a 5-year survival rate of less than 20%. Therefore, it is crucial to elucidate the molecular mechanisms of ICC. Recently, the advance of high-throughput chromosome conformation capture (Hi-C) technology help us look insight into the three-dimensional (3D) genome structure variation during tumorigenesis.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China.
Introducing multiple physical cues to control cell behaviors effectively is considered as a promising strategy in developing bioactive wound dressings. Silk nanofiber-based cryogels are developed to favor angiogenesis and tissue regeneration through tuning hydrated state, microporous structure, and mechanical property, but remained a challenge to endow with more physical cues. Here, β-sheet rich silk nanofibers are used to develop cryogels with nanopore structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!